Supporting Information

Silver(I) ion detection in aqueous media based on "off-on" fluorescent probe

Chunwei Yu, ^{a, d} Jun Zhang, ^b Mingyu Ding ^c and Lingxin Chen ^{a*}

^a Key Laboratory of Coastal Zone Environmental Processes, CAS; Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China

^b School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou 571101, China

^c Department of Chemistry, Tsinghua University, Beijing 100084, China ^d Graduate University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author: Tel./Fax: +86 535 2109130. E-mail address: lxchen@yic.ac.cn (L. Chen).

Table of contents

1. Experimental

Apparatus and reagents	
General procedure for spectroscopic measurements	3
Synthesis of compounds	3
2. NMR and MS spectra of compound 2, 3, H1 and H2	
Fig. S1 ESI-MS mass spectra of compound H1	6
Fig. S2 ¹ H NMR spectrum of compound H1	6
Fig. S3 ¹³ C NMR spectrum of compound H1	7
Fig. S4 ESI-MS mass spectra of compound H2	7
Fig. S5 ¹ H NMR spectrum of compound H2	8
Fig. S6 ¹³ C NMR spectrum of compound H2	8
Fig. S7 ESI-MS mass spectra of compound 2	9
Fig. S8 ¹ H NMR spectrum of compound 2	9
Fig. S9 ¹³ C NMR spectrum of compound 2	10
Fig. S10 ESI-MS mass spectra of compound 3	10
Fig. S11 ¹ H NMR spectrum of compound 3	11
Fig. S12 ¹³ C NMR spectrum of compound 3	11

3. Supplementary spectral data

Fig. S13 Influences of pH on the fluorescence spetra of H1 (10 $\mu M)$ and H1 (10 $\mu M)$ plus
$Ag^{\scriptscriptstyle +}$ (50 $\mu M)$ in the ethanol–water solution (4:1, v/v). The pH was modulated by adding 1 M
HCl or 1 M NaOH in HEPES buffers
Fig. S14 The Job's plot indicating the 1:1 stoichiometry for $H1$ -Ag ⁺ complex12
Fig. S15 Benesi-Hildebrand plot of H1, assuming 1:1 stoichiometry for association between
H1 and Ag^+
Fig. S16 Effect of water content on the fluorescence intensity of H1 (10 μ M) upon addition of
Ag ⁺ (10 μ M) at pH 6.5
Table 1 Results of the sample analysis 14

1. Experimental

Apparatus and reagents

¹H NMR and ¹³C NMR spectra were obtained on a Brucker WM-300 spectrometer, and chemical shifts were given in ppm from tetramethylsilane (TMS). Melting points were measured with a WRS-1B digital melting point apparatus (Shanghai, China). Electrospray ionization (ESI) spectroscopy was performed on a Thermo TSQ Quantum Mass Spectrometer. Fluorescence emission spectra were conducted on a HORIBA Fluoromax-4 spectrofluometer. The pH measurements were carried out on a PHS-3C meter.

Doubly distilled water was used throughout the experiments. All the materials were used as received.

General procedure for spectroscopic measurements

A stock solution of **H1** (1.0 mM) was prepared in DMSO. To 5 mL glass tubes, 0.050 mL **H1** (1.0 mM) and a proper amount of Cu^{2+} stock solution (1.0 mM) were added subsequently and then diluted with ethanol/HEPES buffer (8:2, v/v, pH 6.5, 50 mM). The resulting solution was mixed thoroughly. For all measurements, excitation and emission slit widths were 7 nm and 3 nm, respectively, excitation wavelength was 370 nm.

Synthesis of compound 2, 3, H1, H2

Compound 2

Under N₂ gas, compound **1** (300 mg, 0.90 mmol) and K₂CO₃ (500 mg, 3.62 mmol) were combined in DMF (10 mL) and stirred. 2, 4-dihydroxybenzaldehyde (130 mg, 0.9 mmol) in DMF (10 mL) was added dropwise. The reaction mixture was stirred at 80 °C for 12 h, filtered through Celite and the solvent was evaporated under reduced pressure, purification with silica gel column chromatography (CH₂Cl₂/petroleum ether=15:1, v/v) afforded as a yellow solid. Yields: 245 mg (70 %). ¹H NMR (δ : ppm, CDCl₃): 11.37 (s, 1H, CHO), 9.85 (s, 1H, OH), 8.65-8.67 (d, 1H, ArH), 8.56-8.57 (d, 1H, ArH), 8.44-8.46 (d, 1H, ArH), 7.76-7.79 (t, 1H, ArH), 7.59-7.61 (d, 1H, ArH), 7.26-7.27 (t, 1H, ArH), 6.73-6.76 (d, 1H, ArH), 6.61-6.62 (d, 1H, ArH), 4.18-4.21 (t, 2H, -NCH₂), 1.70-1.76 (m, 2H, CH₂), 1.42-1.49 (m, 2H, CH₂), 0.97-1.00 (t, 3H, CH₃). ¹³C NMR (δ : ppm, CDCl₃): 194.94 (CHO), 164.08, 163.48 (C=O), 156.48, 136.03, 132.55, 132.25, 132.05, 131.03, 129.81, 128.08, 127.19, 124.74, 123.03, 119.12, 117.62, 115.10, 110.73, 106.80, 40.30, 30.23, 20.39, 13.85. MS (ESI) m/z: 388.11 [M-H]⁻

Compound 3

Under N₂ gas, compound **1** (500 mg, 1.5 mmol) and K₂CO₃ (900 mg, 6.52 mmol) were combined in DMF (50 mL) and stirred. 4-hydroxy benzaldehyde (220 mg, 1.8 mmol) in DMF (10 mL) was added dropwise. The reaction mixture was stirred at 80 °C for 12 h. The mixture was cooled and poured into ice-water. The precipitate produced was filtered and further purified by recrystallization from ethanol. Yields: 448 mg (80 %). ¹H NMR (δ : ppm, CDCl₃): 10.03 (s, 1H, CHO), 8.67-8.69 (d, 1H, ArH), 8.53-8.57 (m, 2H, ArH), 8.00 (t, 1H, ArH), 7.98-7.99 (t, 1H, ArH), 7.78-7.81 (m, 1H, ArH), 7.29-7.30 (t, 1H, ArH), 7.28 (s, 1H, ArH), 7.14-7.16 (d, 1H, ArH), 4.18-4.22 (t, 2H, -NCH₂), 1.71-1.77 (m, 2H, CH₂), 1.43-1.51 (m, 2H, CH₂), 0.98-1.01 (t, 3H, CH₃). ¹³C NMR (δ : ppm, CDCl₃): 190.50 (CHO), 164.12, 163.52 (C=O), 160.89, 157.54, 133.12, 132.36, 132.23, 132.05, 129.80, 128.15, 127.05, 124.48, 122.96, 119.77, 118.47, 113.50, 40.27, 30.24, 20.39, 13.85. MS (ESI) m/z: 374.13 [M+H]⁺. Compound **H1**

Under N_2 gas, compound 2 (582 mg, 1.5 mmol) and thiosemicarbazide (164 mg, 1.8 mmol) were combined in ethanol (50 mL). The reaction solution was refluxed for 6 h and stirred for another 1 h at room temperature to form a lot of white precipitate. The solid was filtrated,

washed with ethanol three times. Crude product was purified by recrystallization from ethanol to give **H1** (554 mg, 80 %). ¹H NMR (δ: ppm, DMSO-*d*₆): 11.41 (s, 1H, OH), 10.34 (s, 1H, NH), 8.58-8.60 (d, 1H, ArH), 8.52- 8.55 (d, 1H, ArH), 8.41-8.43 (d, 1H, ArH), 8.38 (s, 1H, N=CH), 8.11-8.12 (s, 2H, NH₂), 7.96 (s, 1H, ArH), 7.86-7.90 (t, 1H, ArH), 7.15-7.18 (d, 1H, ArH), 6.72-6.74 (d, 1H, ArH), 6.71 (s, 1H, ArH), 4.02-4.05 (t, 2H, CH₂), 1.59-1.64 (m, 2H, CH₂), 1.32-1.39 (m, 2H, CH₂), 0.92-0.95 (t, 3H, CH₃). ¹³C NMR (δ: ppm, DMSO-*d*₆): 178.14 (C=S); 163.84, 163.20 (C=O); 158.51, 158.42, 157.51, 138.97, 133.03, 131.92, 129.39, 129.08, 128.57, 127.69, 123.93, 122.65, 118.44, 117.22, 112.88, 111.62, 107.62 (ArC); 56.49, 30.14, 20.27, 14.18. MS (ESI): 461.01 [M]⁻, 922.60 [2M]⁻

Compound H2

Under N₂ gas, compound **3** (560 mg, 1.5 mmol) and thiosemicarbazide (164 mg, 1.8 mmol were combined in ethanol (50 mL). The reaction solution was refluxed for 6 h and formed a lot of white precipitate. The solid was filtrated, washed with hot ethanol three times to give **H1** (468 mg, 70 %). Mp: 240.9-241.4°C; ¹H NMR (δ : ppm, DMSO- d_{δ}): 11.48 (s, 1H, NH), 8.65-8.67 (d, 1H, ArH), 8.57-8.59 (d, 1H, ArH), 8.43-8.45 (d, 1H, ArH), 8.20 (b, 1H, NH), 8.12 (s, 1H, HC=N), 8.05 (b, 1H, NH), 7.96-7.98 (d, 2H, ArH), 7.91-7.93 (t, 1H, ArH), 7.31-7.32 (d, 2H, ArH), 7.10-7.12 (d, 1H, ArH), 4.04-4.07 (t, 2H, CH₂), 1.59-1.65 (m, 2H, CH₂), 1.32-1.39 (m, 2H, CH₂), 0.92-0.94 (t, 3H, CH₃). ¹³C NMR (δ : ppm, DMSO- d_{δ}): 178.48 (C=S); 163.85, 163.20 (C=O); 158.83, 156.40, 141.63, 133.07, 131.99, 131.93, 129.99, 129.40, 128.58, 127.66, 123.86, 122.63, 120.98, 117.08, 112.35, 55.38, 30.14, 20.26, 14.18. MS (ESI): 445.20 [M-H]⁻, 890.95 [2M-H]⁻

2. NMR and MS spectra of compound 2, 3, H1 and H2

Fig. S1

Fig. S4

Fig. S5

Fig. S7

Fig. S10

Fig. S11

Fig. S12

Electronic Supplementary Material (ESI) for Analytical Methods This journal is The Royal Society of Chemistry 2012

3. Supplementary spectral data

Fig. S13

Fig. S14

Fig. S15

Fig. S16

Table 1

Real sample –	$Ag^{+}(10^{-6} M)$	- Sum results (n=3)	Recovery (%)
	Added		
Tap water	0.9	0.81	90
	3.0	3.6	120
	5.0	4.8	96