Supporting information

Copper-promoted probe for nitric oxide based on *o*-phenylenediamine: Large blue-shift in absorption and fluorescence enhancement

Xiaolong Sun, Yufang Xu, Weiping Zhu, Chunsheng He, Lin Xu, Youjun Yang and Xuhong Qian* Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai 200237, China. Email Address: <u>xhqian@ecust.edu.cn</u>

Contents

- 1. Materials and general methods
- 2、Synthesis of sensor
- 3. Determination of quantum yield
- 4. Determination of the detection limit
- 5、 Supplementary spectra data
- 6 Preparation of ROS and RNS
- 8、¹H NMR, ¹³C NMR and ESI-MS spectra
- **9**、References

1. Materials and methods

All the solvents were of analytic grade. ¹H-NMR was measured on a Bruker AV-400 spectrometer with chemical shifts reported in ppm (in D₂O, CDCl₃, CD₃OD with TMS as the internal standard). Mass spectra were measured on a HP 1100 LC-MS spectrometer. Fluorescence spectra were determined on a VARIAN CARY Eclipse Fluorescence spectrophotometer. Absorption spectra were determined on a VARIAN CARY 100 Bio UV-Visible spectrophotometer. The excitation and emission slit widths for **CYPs** were all 5 nm.

2. Synthesis of sensor

Compound 4: was synthesized according to the literature.¹ Mp: 233-234 °C.

Compound 3: Under Ar gas, 4 (0.40 g, 1.37 mmol) and quinolin-8-amine (0.256 g, 1.78 mmol) were dissolved in 8 mL anhydrous DMF, then stirred for 24 h at room temperature. Water (20 mL) was next introduced, causing the product to precipitate. The reaction mixture was filtered and the cake was washed with H_2O . The red solid (0.35 g, 73%) so obtained without further purification.

Compound 2: Compound 3 (0.30 g, 0.78 mmol) and $SnCl_2 H_2O$ (0.88 g, 4.67 mmol) were added into hydrogen chloride (10 mL, 35% concentration). The reaction mixture was stirred for 1 h at 80 0 C. After cooling to r. t., the precipitated solid was collected by filtration and washed with water. The crude material was purified by flash chromatography on silica (CH₂Cl₂ : CH₃OH, 20 : 1, v/v), which afforded a yellow powder (0.26 g, 93%). Mp: 265-267 °C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 6.21-6.23 (m, 2 H), 7.34-7.36 (m, 2 H), 7.64 (dd, J = 8.4 Hz, 8.4 Hz, 1 H), 7.75 (dd, J = 8.0 Hz, 4.0 Hz, 1 H), 8.07 (d, J = 8.4 Hz, 1 H), 8.17 (d, J = 7.2 Hz, 1 H), 8.27 (s, 1 H), 8.55 (d, J = 8.0 Hz, 1 H), 9.04 (d, J = 4.4 Hz, 1 H); ¹³C NMR (400 MHz, DMSO-*d*₆): δ 108.0, 116.4, 119.4, 122.4, 123.8, 124.5, 127.6, 127.8, 129.5, 131.0, 132.1, 132.9, 133.7, 134.1, 136.6, 138.3, 142.1, 144.8, 148.1, 161.1, 161.6; HRMS (ES+) Calcd for ([M+H])⁺, 356.0957; Found, 356.1034

Compound FS:

5-Amino-2-butyl-6-(quinolin-8-ylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione

To a solution of compound 2 (0.50 g, 1.41 mmol) in anhydrous ethanol (20 mL) was added butan-1-amine (0.51 g, 7.04 mmol). The solution was heated at reflux for 2 h. After cooling to r. t., the precipitated solid was collected by filtration and washed with ethanol. The crude material was purified by flash chromatography on silica (CH₂Cl₂ : CH₃OH, 50 : 1, v/v), which afforded a red-brown powder (0.30 g, 52%). Mp: 231.0-232.5 °C.

¹H NMR (400 MHz, CDCl₃): δ 1.01 (t, $J_1 = J_2 = 7.6$ Hz, 3 H), 1.51-1.45 (m, 2 H), 1.77-1.71 (m, 2 H), 4.21 (t, $J_1 = J_2 = 7.6$ Hz, 2 H), 4.42 (s, 2 H), 6.40 (d, J = 7.6 Hz, 1 H), 7.32-7.24 (m, 2 H), 7.52 (dd, J = 8.4 Hz, 4.4 Hz, 1 H), 7.57 (dd, J = 7.6 Hz, 7.6 Hz, 1 H), 8.12 (d, J = 8.4 Hz, 1 H), 8.04 (s, 1H), 8.20 (d, J = 8.4 Hz, 1 H), 8.25 (s, 1 H), 8.35 (d, J = 7.2 Hz, 1 H), 8.92 (d, J = 4.0 Hz, 1 H); ¹³C NMR (400 MHz, CDCl₃): δ 13.8, 20.4, 30.3, 40.2, 108.0, 116.8, 121.4, 121.7, 122.5, 123.0, 123.3, 123.6, 127.3, 127.4, 127.5, 127.8, 128.9, 130.8, 136.3, 138.1, 141.0, 142.3, 147.8, 164.0, 164.5; HRMS (ES+) Calcd for ([M+H])⁺, 411.1743; Found, 411.1821.

Compound FS-1:

 $\label{eq:solution} 5-Butyl-10-(quinolin-8-yl) benzo[de] [1,2,3] triazolo [4,5-g] isoquinoline-4, \\ 6(5H,10H)-dione-4, (5H,10H)-dione-4, (5H,10H)-dio-4, (5H,10H)-dio-4, (5H,10H)-dio-4, (5H,1$

An aqueous solution of NaNO₂ (34 mg, 0.48 mmol) was added to a suspension of FS (200mg, 0.48 mmol) in 15 mL of 25% HCl at 0 °C. The mixture was stirred at 0 °C for 30 min. The resulting mixture was filtered and the cake was washed with H₂O. The crude material was purified by flash chromatography on silica (CH₂Cl₂: CH₃OH, 10 : 1, v/v), which afforded a light-yellow powder (0.18 g, 88%). Mp > 300 °C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 0.95 (t, $J_1 = J_2 = 7.2$ Hz, 3 H), 1.42-1.37 (m, 2 H), 1.69-1.63 (m, 2 H), 4.10 (t, $J_1 = J_2 = 7.2$ Hz, 2 H), 7.31 (d, J = 8.0 Hz, 1 H), 7.60 (dd, J = 8.0 Hz, 8.0 Hz, 1 H), 7.70 (dd, J = 8.4 Hz, 4.0 Hz, 1 H), 8.04 (dd, J = 8.0 Hz, 8.0 Hz, 1 H), 8.42 (d, J = 7.2, 1H), 8.48 (d, J = 7.2 Hz, 1 H), 8.53 (d, J = 8.4 Hz, 1 H), 8.68 (d, J = 3.6 Hz, 1 H), 8.72 (d, J = 8.4 Hz, 1 H), 9.19 (s, 1 H); ¹³C NMR (400 MHz, CDCl₃): δ 13.8, 20.4, 30.2, 40.6, 118.7, 120.5, 122.8, 123.6, 125.9, 126.5, 127.1, 127.8, 128.1, 128.9, 129.2, 130.6, 131.5, 134.3, 134.5, 136.4, 143.4, 152.1, 163.7, 164.0; HRMS (ES+) Calcd for ([M+H])⁺, 422.1539 ; Found, 422.1617.

3 Determination of quantum yield

The quantum yield of Cu²⁺[FS] and FS-1 were determined according to the literature.²

$$\phi_1 = \frac{\phi_B I_1 A_B \lambda_{exB} \eta_1}{I_B A_1 \lambda_{ex1} \eta_B}$$

Where Φ is quantum yield; I is integrated area under the corrected emission spectra; A is absorbance at the excitation wavelength; λ_{ex} is the excitation wavelength; η is the refractive index of the solution; the S and B refer to the sample and the standard, respectively. We chose Quinine sulfate with 0.1 M H₂SO₄ as standard, which has the quantum yield of 0.58. The quantum yield of Cu²⁺[FS] and FS-1 are 0.022 and 0.075, respectively.

4、 Supplementary spectra data

Figure S1. (a) Fluorescence spectra ($\lambda_{ex} = 350 \text{ nm}$) of FS ($50 \,\mu$ M) with varied concentrations of NO (1eq, 2eq, 3eq, 4eq) in 10 mM Tris-HCl buffer (pH 7.30, containing 40% ethanol); (b) Fluorescence spectra ($\lambda_{ex} = 350 \text{ nm}$) of FS and FS + 2eq Cu²⁺ in 10 mM Tris-HCl buffer (pH 7.30, containing 40% ethanol); (c) Fluorescence spectra ($\lambda_{ex} = 350 \text{ nm}$) of FS (red line), FS + 2 eq Zn²⁺ (black line) and subsequent with varied concentrations of NO (0.25 eq, 0.75 eq, 1.25 eq, 1.5 eq, 2.0 eq) in 10 mM Tris-HCl buffer (pH 7.30, containing 40% ethanol); (d) Fluorescence spectra ($\lambda_{ex} = 350 \text{ nm}$) of FS (black line), FS + 2 eq Zn²⁺ + 2 eq Cu²⁺ (blue line) and subsequent with varied concentrations of NO (0.25 eq, 0.75 eq, 1.25 eq, 1.5 eq, 2.0 eq) in 10 mM Tris-HCl buffer (pH 7.30, containing 40% ethanol); (d) Fluorescence spectra ($\lambda_{ex} = 350 \text{ nm}$) of FS (black line), FS + 2 eq Zn²⁺ + 2 eq Cu²⁺ (blue line) and subsequent with varied concentrations of NO (1.0 eq, 2.0 eq) in 10 mM Tris-HCl buffer (pH 7.30, containing 40% ethanol).

Figure S2. (a) Fluorescence responses of Cu^{2+} [FS] (50 μ M FS and 100 μ M Cu^{2+}) to 100 μ M NO aqueous solution (2 mM for saturated NO aqueous solution) and 500 μ M other various ROS and RNS species. (b) Fluorescence responses of Cu^{2+} [FS] (50 μ M FS and 100 μ M Cu^{2+}) to other various 100 μ M ROS and RNS species, followed by 50 μ M NO aqueous solution. Spectra were acquired in 10 mM Tris buffer solution (pH 7.30, containing 40.0% ethanol), at 25 0 C for 2 min.

Figure S3. Job's plot showing the 1:1 binding of FS with Cu^{2+} . The total concentration of the probe and Cu^{2+} is 20 μ M in 10 mM Tris-HCl solution (pH 7.30, containing 40.0% ethanol).

5 Determination of the detection limit

Figure S4. Determination of the detection limit between 0 - 100 nM of NO.

6、 Preparation of ROS and RNS

Various ROS and RNS including H_2O_2 , 1O_2 , ROO•, NO, O_2^{\bullet} , OCl⁻, •OH, NO₂⁻, NO₃⁻, ^tBuOOH and ONOO⁻ were prepared according to the following methods:

Preparation of {}^{1}O_{2}: ${}^{1}O_{2}$ was generated by the reaction of $H_{2}O_{2}$ with NaClO, which was prepared according to the literature report.³

Preparation of ROO': ROO• was generated from 2,2'-azobis (2-amidinopropane) dihydrochloride. AAPH (2,2'-azobis(2-amidinopropane) dihydrochloride) in deionizer water was added, then stirred at 25 °C for 30 min.

Preparation of NO: Nitric oxide (NO) was prepared by treating 3.6 M sulfuric acid solution with 7.3 M sodium nitrite solution and its stock solution (2.0 mM) was prepared by bubbling NO into deoxygenated de-ionized water for 30 min.

Preparation of O_2^-: Superoxide was generated from KO₂ with a saturated solution of KO₂ in DMSO (~1 mM).⁴

Preparation of HO': Hydroxyl radical was generated by Fenton reaction. To prepare •OH solution, ferrous chloride was added in the presence of 10 equiv of H_2O_2 .⁵

Preparation of peroxynitrite: Peroxynitrite solution was synthesized as reported.⁶ The peroxynitrite concentration was estimated by using an extinction coefficient of $1670 \pm 50 \text{ cm}^{-1} \text{ (mol/L)}^{-1}$ at 302 nm.

Preparation of HOCI: Commercial bleach was the source of NaOCI. The concentration of HOCI was determined by titration with $S_2O_3^{2^-}$.

All other chemicals were from commercial sources and of analytical reagent grade, unless indicated otherwise.

7. The characterization data of compounds $Cu^{2+}[FS]$ and FS-1

Figure S5. ESI-MS spectrum of FS (50 μ M) with Cu²⁺ (100 μ M) in methanol. The peak at m/z = 472.6 corresponds to [FS +Cu²⁺ -H]⁺.

Figure S6. ESI-MS spectrum of FS (50 μ M) + Cu²⁺(100 μ M) + NO (100 μ M) in methanol. The peak at m/z = 422.5 corresponds to FS-1.

8、¹H NMR, ¹³C NMR and ESI-MS spectra

HRMS spectrum of compound FS

Elemental Composition Report

Page 1

688.4770

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions 27 formula(e) evaluated with 1 results within limits (up to 1 best isotopic matches for each mass) Elements Used: C: 0-30 H: 0-30 N: 0-4 O: 0-2 YYS YYS-SXL-000 33 (1.111) Cm (30:33) 1: TOF MS ES+ 7.25e+003 411.1821 100-% 412.1852 346.3325 453.1670 0 460 380 400 520 580 420 440 480 500 540 560 620 640 660 360 600

Minimum: Maximum:		3.0	50.0	-1.5 100.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula				
411.1821	411.1821	0.0	0.0	16.5	7.4	0.0	C25	H23	N4	02	

¹H NMR of compound FS-1

¹³C NMR of compound FS-1

9、References

- 1. Peters, A. K. a. A., J. Soc. Dyers. Colour., 1974, 153-157.
- 2. Casey, K. G, Quitevis, E. L., J. Phys. Chem., 1988, 92, 6590-6594.
- 3. Abo, M., Y. Urano., J. Am. Chem. Soc., 2011, 133, 10629-10637.

Electronic Supplementary Material (ESI) for Analytical Methods This journal is C The Royal Society of Chemistry 2012

- 4. Darling, T. R., J. Pouliquen., J. Am. Chem. Soc., 1974, 96, 1247-1248.
- 5. Foote, C. S., S. Wexler., J. Am. Chem. Soc., 1968, 90, 975-981.
- 6. Lippert, A. R., E. J. New., J. Am. Chem. Soc., 2011, 133, 10078-10080.