Supporting Information

Ionic-Liquid-Based Aqueous Biphasic Systems for Improved Detection of Bisphenol A in Human Fluids

Helena Passos,^{*a*} Ana C. A. Sousa,^{*b,c*} M. Ramiro Pastorinho,^{*b*} António J. A. Nogueira,^{*b*} Luís Paulo N. Rebelo^{*d*}, João A. P. Coutinho^{*a*} and Mara G. Freire^{*a,d*}

 ^a Departamento de Química, CICECO, Universidade de Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal. Fax: +351 234370084; Tel: +351 234370958; E-mail: maragfreire@ua.pt.
 ^b Department of Biology & CESAM, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal. Fax: +351 234372587; Tel: +351 234370350; E-mail: anasousa@ua.pt.
 ^c CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D.

Henrique, 6201-506 Covilhã, Portugal.

^d Instituto de Tecnologia Química e Biológica, www.itqb.unl.pt, UNL, Apartado 127, 2780-901 Oeiras, Portugal.

Experimental Section

Materials. BPA, 4,4'-(propane-2,2-diyl)diphenol, \geq 99 wt % pure, was from Aldrich. The ionic liquids used in the ABS composition were 1-ethyl-3-methylimidazolium chloride, $[C_2 mim]Cl$ (> 98 wt %); 1-butyl-3-methylimidazolium chloride, $[C_4 mim]Cl$ (99 wt %); 1-hexyl-3-methylimidazolium chloride, $[C_6 mim]Cl (> 98 wt %)$; 1-allyl-3methylimidazolium chloride, [amim]Cl (> 98 wt %) 1-butyl-1-methylpyrrolidinium chloride, $[C_4mpyr]Cl (99 \text{ wt }\%)$; tetrabutylammonium chloride, $[N_{4444}]Cl (\geq 97 \text{ wt }\%)$; tetrabutylphosphonium chloride, [P₄₄₄₄]Cl (98 wt %); and choline chloride, [N_{1112OH}]Cl $(\geq 98 \text{ wt } \%)$. All ionic liquids were commercially acquired from Iolitec, with the exception of [P₄₄₄₄]Cl that was kindly supplied by Cytec Industries Inc., [N₄₄₄₄]Cl that was from Aldrich and [N_{1112OH}]Cl that was from Sigma. Ionic liquids individual samples were dried under constant conditions before use (at moderate vacuum and temperature and for a minimum of 48 h). The purity of each ionic liquid was further checked by ¹H and ¹³C NMR spectra and found to be in accordance with the purities given by the suppliers. Urea, 99 wt % pure, was supplied by Panreac and was used without further purification. K₃PO₄, 98 wt % pure, and NaCl, 99.9 wt % pure, were from Sigma and Normapur, respectively. The water used was ultrapure water, double distilled, passed by a reverse osmosis system and finally treated with a Milli-Q plus 185 water purification equipment.

Synthetic human urine was prepared by the dissolution of urea and NaCl in pure water, at the concentrations of $1.2 \text{ g} \cdot \text{dm}^{-3}$ and $4.0 \text{ g} \cdot \text{dm}^{-3}$, respectively.

Experimental Procedure. The solubility curves of $[C_4mpyr]Cl$, $[P_{4444}]Cl$, $[N_{4444}]Cl$ and $[N_{1112}OH]Cl$ were determined through the cloud point titration method (previously described by us¹), and at (298 ± 1) K and atmospheric pressure. Aqueous solutions of K_3PO_4 at 50 wt % and aqueous solutions of the different hydrophilic ionic liquids (with concentrations ranging from 60-70 wt %) were prepared and used for the determination of the binodal curves. The binodal curves of the remaining ionic liquids were previously reported by Neves et al.²

The experimental binodal curves were further fitted by the following eq^3 :

$$[IL] = A \exp[(B \times [Salt]^{0.5}) - (C \times [Salt]^{3})]$$
(1)

where [IL] and [Salt] are the ionic liquid and the inorganic salt mass fraction percentages, respectively, and *A*, *B*, and *C* are constants obtained by the regression of the experimental binodal data.

The tie-lines (TLs) were determined by a gravimetric method originally proposed by Merchuck et al.³ for polymer-based ABS, and later on applied by Rogers and co-workers⁴ to ionic-liquid-based ABS. A ternary mixture composed of ionic liquid + K_3PO_4 + water at the biphasic region was gravimetrically prepared within ±10⁻⁴ g, vigorously agitated, and left to equilibrate for at least 12 h and at (298 ± 1) K, aiming at a complete separation of the coexisting phases. After such time, both phases were carefully separated and individually weighed.

Each TL was determined by the lever-arm rule through the relationship between the top phase composition and the overall system composition, and for which the following system of four equations (eqs 2 - 5) and four unknown values ([*IL*]_{IL}, [*IL*]_{Salt}, [*Salt*]_{IL} and [*Salt*]_{Salt}) was solved:³

$$[IL]_{IL} = A \exp[(B \times [Salt]_{IL}^{0.5}) - (C \times [Salt]_{IL}^{3})]$$
(2)

$$[IL]_{\text{Salt}} = A \exp[(B \times [Salt]_{\text{Salt}}^{0.5}) - (C \times [Salt]_{\text{Salt}}^{3})]$$
(3)

$$[IL]_{IL} = \frac{[IL]_{M}}{\alpha} - \frac{1 - \alpha}{\alpha} \times [IL]_{Salt}$$
(4)

$$[Salt]_{IL} = \frac{[Salt]_{M}}{\alpha} - \frac{1 - \alpha}{\alpha} \times [Salt]_{Salt}$$
(5)

where subscripts "IL", "Salt", and "M" designate the ionic-liquid-rich phase, the saltrich phase and the mixture, respectively; [*Salt*] and [*IL*] represent, respectively, the weight fractions of K₃PO₄ and ionic liquid; and α is the ratio between the mass of the top phase and the total mass of the mixture. The system solution results in the composition (wt %) of the ionic liquid and inorganic salt in the top and bottom phases. For the calculation of each tie-line length (TLL) the following equation was used:

$$TLL = \sqrt{\left(\left[Salt\right]_{IL} - \left[Salt\right]_{Salt}\right)^2 + \left(\left[IL\right]_{IL} - \left[IL\right]_{Salt}\right)^2}$$
(6)

where subscripts "IL" and "Salt" symbolize, respectively, the ionic-liquid-rich phase and the salt-rich phase, and [*Salt*] and [*IL*] are the mass fraction percentages of organic salt and IL, as described before.

The pH values (\pm 0.02) of the ionic-liquid-rich and inorganic-salt-rich aqueous phases were measured at (298 \pm 1) K using an HI 9321 Microprocessor pH meter (HANNA instruments). The compositions adopted at the biphasic region are the same as those applied for the TLs determination and BPA partitioning studies.

For fixed ternary compositions, and for which the TLs were previously determined, new biphasic systems were prepared making use of an aqueous solution of BPA at 4.3×10^{-4}

mol·dm⁻³ instead of pure water. Each mixture was gravimetrically prepared within $\pm 10^{-4}$ g, vigorously agitated, and left to equilibrate for at least 12 h and at (298 \pm 1) K, aiming at a complete partitioning of BPA. Equilibrations studies confirmed that the complete partitioning of BPA among the phases was attained after 6 h. After 12 h of equilibration, both phases were carefully separated, individually weighed, and used for the BPA quantification and confirmation of the TLs compositions.

The BPA quantification, in both phases, was carried out by UV spectroscopy using a SHIMADZU UV-1700, Pharma-Spec spectrometer, at a wavelength of 293 nm, and using a calibration curve previously established in alkaline medium (above the pKa of BPA). Possible interferences of both the inorganic salt and the ionic liquid with the analytical method were taken into account and blank controls were always employed. The stability of BPA in the coexisting phases of all systems was confirmed and it is safe to admit that the molecule is stable at least up to 72 h in the ABS media.

Results

The phase diagrams determined in this work are depicted in Figure S1. Moreover, Figure S1 also presents the graphical representation of each TL which corresponds to the mixture used for the partitioning studies of BPA. Figure S2 shows the phase diagrams of $[C_2mim]Cl$, $[C_4mim]Cl$, $[C_6mim]Cl$ and [amim]Cl containing systems and respective TLs. Figures S3 and S4 show the diverse mixture compositions evaluated for the extraction of BPA from aqueous phases with $[C_2mim]Cl$ - and $[N_{1112OH}]Cl$ -based systems.

Fig. S1. Phase diagrams for ABS composed of ionic liquid + water + K_3PO_4 : (\bigstar) [C_4mpyr]Cl, (\bigstar) [P_{4444}]Cl, (\bigstar) [N_{4444}]Cl, (\bigstar) [N_{1112OH}]Cl, (\blacksquare) TL data, (--) fitted curve by eq (1). The colour of each TL and fitted curve correspond to the same colour of the respective phase diagram.

Fig. S2. Phase diagrams for ABS composed of ionic liquid + water + K_3PO_4 :² (\blacklozenge) [C_2mim]Cl, (\blacklozenge) [C_4mim]Cl, (\blacklozenge) [C_6mim]Cl, (\blacklozenge) [amim]Cl, (\blacksquare)TL data, (--) fitted curve by eq (1). The colour of each TL and fitted curve correspond to the same colour of the respective phase diagram.

Fig. S3. Phase diagrams for the $[C_2mim]Cl + K_3PO_4 ABS: (\clubsuit)$ binodal curve data; (-) fitted curve by eq (1); (•) TL data; extraction points: (♠) 12.00 wt % of $K_3PO_4 + 27.94$ wt % of IL; (♠) 20.00 wt % of $K_3PO_4 + 19.87$ wt % of IL; (♠) 23.00 wt % of $K_3PO_4 + 16.84$ wt % of IL; (♠) 15.00 wt % of $K_3PO_4 + 22.00$ wt % of IL; (♠) 15.00 wt % of $K_3PO_4 + 28.00$ wt % of IL; (♠) 15.00 wt % of $K_3PO_4 + 28.00$ wt % of IL; and (♠) 15.00 wt % of $K_3PO_4 + 31.00$ wt % of IL.

Fig. S4. Phase diagrams for the $[N_{1112OH}]Cl + K_3PO_4$ ABS: (\bigstar) binodal curve data; (-) fitted curve by eq (1); (\bullet) TL data; extraction points: (\bigstar) 15.00 wt % of K₃PO₄ + 40.00 wt % of IL; (\bigstar) 19.00 wt % of K₃PO₄ + 34.47 wt % of IL; (\bigstar) 26.00 wt % of K₃PO₄ + 25.85 wt % of IL; (\bigstar) 22.00 wt % of K₃PO₄ + 25.00 wt % of IL; (\bigstar) 22.00 wt % of K₃PO₄ + 28.00 wt % of IL; (\bigstar) 22.00 wt % of K₃PO₄ + 28.00 wt % of IL; and (\bigstar) 22.00 wt % of K₃PO₄ + 30.77 wt % of IL.

Table S1 presents the detailed extraction efficiencies of BPA obtained with the several systems investigated, the mixture compositions (and respective tie-lines and tie-line lengths), and the pH of the coexisting phases. Table S2 presents similar information for the urine-type ABS.

Table S1. Extraction efficiencies of BPA (*EE*%) in ionic-liquid-based ABS, mixture compositions, and respective tie-lines (TLs) and tie-line lengths (TLLs), and pH values of the coexisting phases.

Ionic liquid	weight fraction percentage / wt %							тп	EE%	
ionie nquiu	$[IL]_{IL}$	$[Salt]_{IL}$	$pH_{IL} \\$	$[IL]_{M}$	$[Salt]_{M}$	[IL] _{Salt}	[Salt] _{Salt}	$pH_{Salt} \\$	ILL	± 0.2
[C ₂ mim]Cl	28.027	8.848	13.18	21.994	15.117	3.690	34.139	13.09	35.100	99.4
	34.059	5.943	13.13	24.956	14.959	2.450	37.251	13.18	44.630	99.8
	39.516	4.043	13.32	27.973	14.975	1.656	39.899	13.04	52.144	100.0
	43.730	2.941	13.28	31.018	15.079	0.694	44.958	13.63	60.146	100.0
[C ₄ mim]Cl	37.110	4.401	13.05	25.016	15.022	1.788	35.421	12.97	47.009	99.5
[C ₆ mim]Cl	39.513	4.427	12.93	24.938	15.290	1.637	32.657	12.92	47.239	99.1
[amim]Cl	35.734	5.622	13.25	25.028	15.021	2.183	35.077	13.24	44.647	99.9
[C ₄ mpyr]Cl	39.322	2.714	13.40	25.028	15.026	0.971	35.748	13.07	50.617	98.5
[P ₄₄₄₄]Cl	47.450	2.471	13.04	24.978	14.992	0.897	28.414	12.69	53.296	99.1
[N ₄₄₄₄]Cl	45.359	1.644	13.37	25.077	15.051	0.380	31.378	13.11	53.918	99.3
[N _{11120H}]Cl	37.365	11.706	13.11	25.035	22.074	7.546	36.779	12.99	38.959	98.9
	39.089	10.780	13.14	26.024	21.887	6.230	38.715	13.00	43.129	99.6
	44.572	8.183	13.18	27.949	22.153	4.370	41.966	13.01	52.512	100.0
	48.838	6.516	13.25	30.740	22.124	2.470	46.505	12.22	61.230	100.0

Ionic liquid	weight fraction p	<i>EE</i> % + 0 2		
ionie nquiu	$[IL]_{M}$	$[Salt]_{M}$	/0 _ 0.2	
[C ₂ mim]Cl	24.977	14.994	99.8	
[C ₄ mim]Cl	25.049	15.195	100.0	
[C ₆ mim]Cl	25.053	15.007	99.6	
[amim]Cl	25.064	15.104	100.0	
[C ₄ mpyr]Cl	25.012	15.024	99.9	
[P ₄₄₄₄]Cl	25.038	14.994	98.9	
[N4444]Cl	24.994	14.901	100.0	
[N _{1112OH}]Cl	40.026	14.850	100.0	

Table S2. Extraction efficiencies of BPA (*EE*%) in urine-type ionic-liquid-based ABS

 and respective mixture compositions.

References

- S.P.M. Ventura, C.M.S.S. Neves, M.G. Freire, I.M. Marrucho, J. Oliveira and J.A.P. Coutinho, J. Phys. Chem. B, 2009, 113, 9304; A.F.M. Cláudio, A.M. Ferreira, S. Shahriari, M.G. Freire and J.A.P. Coutinho, J. Phys. Chem. B, 2011, 115, 11145; C.L.S. Louros, A.F.M. Cláudio, C.M.S.S. Neves, M.G. Freire, I.M. Marrucho, J. Pauly and J.A.P. Coutinho, Int. J. Mol. Sci., 2010, 11, 1777; M. Domínguez-Pérez, L.I.N. Tomé, M.G. Freire, I.M. Marrucho, O. Cabeza and J.A.P. Coutinho, Sep. Purif. Technol., 2010, 72, 85; M.G. Freire, C.L.S. Louros, L.P.N. Rebelo and J.A.P. Coutinho, Green Chem., 2011, 13, 1536.
- 2. C.M.S.S. Neves, S.P.M. Ventura, M.G. Freire, I.M. Marrucho and J.A.P. Coutinho, *J. Phys. Chem. B*, 2009, **113**, 5194.
- 3. J.C. Merchuk, B.A. Andrews, J.A. Asenjo, J. Chromatogr. B, 1998, 711, 285.
- K.E. Gutowski, G.A. Broker, H.D. Willauer, J.G. Huddleston, R.P. Swatloski, J.D. Holbrey, R.D. Rogers, J. Am. Chem Soc., 2003, 125, 6632.