Supporting Information

The first ratiometric fluorescent probe for aminopeptidase N

Laizhong Chen, Wei Sun, Wenhua Li, Jing Li, Lupei Du, Wenfang Xu, Hao Fang and Minyong Li*

Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China

*Tel./fax: +86-531-8838-2076, E-mail: mli@sdu.edu.cn

Table of Contents

1. Materials and instruments	2
2. Synthesis	2
3. Reference	7
4. Cell culture and inhibition assay	
5. Fluorometeric Analysis	
6.Mechanism study	11
7. Stability of Ala-PABA-7HC	
8. ¹ H NMR spectra	13
7. ¹³ C NMR spectra	16
8. HRMS	

1. Materials and instruments

All reagents were purchased from Acros and Aldrich. Twice-distilled water was used throughout all experiments. ¹H NMR, ¹³C NMR were recorded on a Bruker 300 NMR, 400 NMR, 600 NMR spectrometer. Mass spectra were performed by the analytical and the mass spectrometry facilities at Shandong University.

2. Synthesis

Scheme S1. Synthesis of probe Ala-PABA-7HC, Nva-PABA-7HC, Met-PABA-7HC.

1a-1c and **2** were synthesized according to literature procedures¹.

Methyl 4-(2-(tert-butoxycarbonyl)propanamido)benzoate (3a). To a stirred solution of Boc-Ala (**1a**) (1.0 g, 5.5 mmol) in 50 mL DCM was added HOBT (0.75 g, 5.5 mmol) and EDCI (1.05 g, 5.5 mmol) at 0°C. After 30 min, **2** (0.93 g, 5 mmol) was added to the solution rapidly and the mixture was stirred at room temperature for 10 h. Saturated citric acid was added to the mixture. The produced precipitation was filtered. The organic layer was washed by saturated citric acid (50 mL*3), saturated NaHCO₃ (50 mL*3), brine (50 mL*1) and dried over anhydrous MgSO₄ for 24 h. The solution was concentrated under reduced pressure and then recrystallized with AcOEt-*n*-hexane to yield a white solid, 0.94 g, yield = 85.4%, mp: 167.9-170.4°C.

Methyl 4-(2-(tert-butoxycarbonyl)pentanamido)benzoate (3b). The synthesis was analogous to 3a with Boc-Nva (1b) as the starting material. The product was obtained as a white solid. Yield = 69.1%, mp: 149.8-151.0°C.

methyl 4-(2-(tert-butoxycarbonyl)-4-(methylthio)butanamido)benzoate (3c). The synthesis is analogous to 3a with Boc-Met (1c) as the starting material. The product was obtained as a white solid. Yield = 68.0%, mp: 100.1-102.3°C.

tert-butyl 1-(4-(hydroxymethyl)phenylamino)-1-oxopropan-2-ylcarbamate (4a).

Compound **3a** (0.63 g, 2.0 mmol) was dissolved in THF (20 mL) and slowly added LiAlH₄ (0.23 g, 6 mmol) at 0°C. After stirring for 1h at room temperature, the mixture was adjusted pH to 7 with 2M HCl. After filtration, the filtrate was concentrated with a rotary evaporator. The residue was dissolved in AcOEt and washed with brine. The AcOEt solution was dried over Na₂SO₄, concentrated with a rotary evaporator and purified by combiflash to yield a white solid, 0.34 g, yield = 68.0%, mp: 140.1-142.2°C.

tert-butyl 1-(4-(hydroxymethyl)phenylamino)-1-oxopentan-2-ylcarbamate (4b). The synthesis was analogous to 4a with (3b) as the starting material. The product was obtained as colorless oil, yield = 59.0%.

tert-butyl 1-(4-(hydroxymethyl)phenylamino)-4-(methylthio)-1-oxobutan-2-yl carbamate (4c). The synthesis was analogous to 4a with 3c as the starting material. The product was obtained as colorless oil, yield = <math>61.1%.

4-(2-(*tert***-butoxycarbonyl)propanamido)benzyl methanesulfonate (5a).** To the stirred solution of **4a** (0.54 g,1.84 mmol) in anhydrous 50 mL THF was added triethanolamine (0.77 mL, 5.5 mmol) and methanesulfonyl chloride (0.43 mL, 5.5 mmol) at 0°C, the mixture was stirred at room temperature for 6 h. The reaction mixture was concentrated under reduced pressure and redissolved in 50 mL AcOEt, then washed by 0.5 M HCl (50 mL*3), brine (50 mL*1) and dried over anhydrous MgSO₄ for 24 h. The solution was concentrated under reduced pressure to yield a white solid, 0.50 g, yield 72.8%, mp: 142.7-144.7°C.

4-(2-(*tert***-butoxycarbonyl)pentanamido)benzyl methanesulfonate (5b).** The synthesis was analogous to **5a** with **4b** as the starting material. The product was obtained as obtained as brown oil, yield = 65.2%.

4-(2-(*tert*-butoxycarbonyl)-4-(methylthio)butanamido)benzyl methanesulfonate (5c). The synthesis was analogous to 5a with 4c as the starting material. The product was obtained as brown oil, yield = 80.1%.

tert-butyl 1-oxo-1-(4-((2-oxo-2*H*-chromen-7-yloxy)methyl)phenylamino)propan-2-yl carbamate (6a). Anhydrous K_2CO_3 was added to the solution of 7-hydroxycoumarin (0.07 g, 0.45 mmol) in 10 mL DMF at room temperature, the mixture was stirred for 15 min. 5a was added to the mixture and stirred at room temperature overnight. 50 mL AcOEt was added to the mixture, the organic solution was washed with 10% aqueous K_2CO_3 solution (50 mL*5), brine (50 mL*1) and dried over anhydrous MgSO₄ for 24 h. The solution was concentrated under reduced pressure and then recrystallized with AcOEt-*n*-hexane to yield a white solid, 0.05 g, yield = 38.0%, mp:192.3-194.4°C.

tert-butyl 1-oxo-1-(4-((2-oxo-2*H*-chromen-7-yloxy)methyl)phenylamino)pentan-2-yl carbamate (6b). The synthesis was analogous to 6a with 5b as the starting material. The product was obtained as a white solid, yield = 21.5%, mp: 177.5-179.6°C.

tert-butyl 4-(methylthio)-1-oxo-1-(4-((2-oxo-2*H*-chromen-7-yloxy)methyl)phenyl amino)butan-2-ylcarbamate (6c). The synthesis is analogous to 6a with 5c as the starting material. The product was obtained as a white solid, yield = 20.0%, mp: $128.0-129.0^{\circ}$ C.

2-amino-N-(4-((2-oxo-2H-chromen-7-yloxy)methyl)phenyl)propanamide

hydrochloride (Ala-PABA-7HC). 6a (0.05 g, 0.11 mmol) in 5 mL EtOAc solution saturated with HCl gas was stirred at room temperature for 2 h. The mixture was filtered to obtain a white solid, 0.04 g, yield = 98.5%, mp: 234.2-235.7°C. ¹H-NMR (D₂O, 400 MHz): δ 7.82 (d, 1 H, *J* = 9.4 Hz), 7.40-7.46 (m, 5 H,), 6.91 (dd, 1 H, *J* = 8.7 Hz, 2.0 Hz,), 6.82 (s, 1 H), 5.03 (s, 2 H), 4.19(q, 1 H, *J* = 7.1 Hz), 1.60 (d, 3H, *J* = 7.1 Hz); ¹³C-NMR (DMSO, 150 MHz): δ 168.0, 161.9, 160.7, 155.8, 144.8, 138.7, 132.0, 130.0, 129.3, 119.8, 113.5, 113.0, 112.9, 102.1, 70.1, 49.4, 17.7; HRMS (ESI) m/z calcd. for C₁₉H₁₉N₂O₄ ([M + H]⁺) 339.1339; found 339.1333.

2-amino-N-(4-((2-oxo-2H-chromen-7-yloxy)methyl)phenyl)pentanamide

hydrochloride (Nva-PABA-7HC). The synthesis was analogous to Ala-PABA-7HC with **6b** as the starting material. The product was obtained as a white solid, yield = 95.0%, mp: 249.1-250.0°C. ¹H-NMR (DMSO, 600 MHz): δ 8.00 (d, 1 H, *J* = 12 Hz), 7.70 (d, 2 H, *J* = 6Hz), 7.65 (d, 1 H, *J* = 6 Hz), 7.47 (d, 1H, *J* = 6Hz), 7.08 (s, 1 H), 7.02 (d, 2 H, *J* = 6 Hz), 6.30 (d, 1H, *J* = 12 Hz), 5.18 (s, 2 H), 4.04 (s, 1 H),1.79-1.82(m, 2 H), 1.35-1.42 (m, 2 H), 0.90(t, 3H, *J* = 6 Hz); ¹³C-NMR (DMSO, 150 MHz): δ 168.1, 161.9, 160.7, 155.8, 144.8, 138.5, 132.2, 130.0, 129.2, 119.9, 113.5, 113.1, 113.0, 102.1, 70.1, 53.3, 33.7, 18.2, 14.1; HRMS (ESI) m/z calcd. for C₂₁H₂₃N₂O₄ ([M + H]⁺) 367.1652; found 367.1644.

2-amino-4-(methylthio)-N-(4-((2-oxo-2*H***-chromen-7-yloxy)methyl)phenyl)butanami de hydrochloride (Met-PABA-7HC). The synthesis was analogous to Ala-PABA-7HC with 6c** as the starting material. The product was obtained as a white solid, yield 93.9%, mp:225.7-228.2°C. ¹H-NMR (D₂O, 400 MHz): δ 7.89 (d, 1 H, *J* = 10 Hz), 7.49-7.53 (m, 5 H), 6.95-6.99 (m, 2 H), 6.28 (d, 1H, *J* = 10 Hz), 5.19 (s, 2 H), 4.22-4.25(m, 1 H), 2.65 (t, 2H, *J* = 7.2 Hz), 2.28-2.30 (m, 2H), 2.09 (s, 3H); ¹³C-NMR (DMSO, 150 MHz): 167.5, 161.9, 160.7, 155.8, 144.8, 138.5, 132.2, 130.0, 129.3, 120.0, 113.5, 113.0, 113.0, 102.0, 70.0, 52.8, 31.4, 28.8, 15.0. HRMS (ESI) m/z calcd. for C₂₁H₂₃N₂O₄S ([M + H]⁺) 399.1373; found 399.1375.

Scheme S2. Synthesis of probe Nva-OABA-7HC, Met-OABA-7HC.

tert-butyl 1-(2-(hydroxymethyl)phenylamino)-1-oxopentan-2-ylcarbamate (7b). To a stirred solution of Boc-Nva (1b) (1.2 g, 5.5 mmol) in 50 mL DCM was added HOBT (0.75 g, 5.5 mmol) and EDCI (1.05 g, 5.5 mmol) at 0°C. After 30 min, 2-amino benzyl alcohol (0.62 g, 5 mmol) was added to the solution rapidly and the mixture was stirred at rt for 10 h. Saturated citric acid was added to the mixture. The produced precipitation was filtered. The organic layer was washed by saturated citric acid (50 mL*3), saturated NaHCO₃ (50 mL*3), brine (50 mL*1) and dried over anhydrous MgSO₄ for 24 h. The solution was concentrated under reduced pressure and then purified by combiflash to yield a white solid, 0.97 g, yield = 60.0%, mp: 110.0-112.3°C.

tert-butyl 1-(2-(hydroxymethyl)phenylamino)-4-(methylthio)-1-oxobutan-2-yl carbamate (7c). The synthesis was analogous to 7b with 1c as the starting material. The product was obtained as a white solid, yield = 72.9%, mp:100.1-101.0°C.

2-(2-(*tert***-butoxycarbonyl)pentanamido)benzyl methanesulfonate (8b).** The synthesis was analogous to **5a** with **7b** as the starting material. The product was obtained as brown oil, yield = 80.1%.

2-(2-(*tert***-butoxycarbonyl)-4-(methylthio)butanamido)benzyl methanesulfonate (8c).** The synthesis was analogous to **5a** with **7c** as the starting material. The product was obtained as brown oil, yield = 65.3%.

tert-butyl 1-oxo-1-(2-((2-oxo-2*H*-chromen-7-yloxy)methyl)phenylamino)pentan-2-yl carbamate (9b). The synthesis was analogous to 6a with 8b as the starting material. The product was obtained as a white solid, yield = 20.1%, mp: $158.0-160.1^{\circ}$ C.

tert-butyl 4-(methylthio)-1-oxo-1-(2-((2-oxo-2*H*-chromen-7-yloxy)methyl)phenyl amino)butan-2-ylcarbamate (9c). The synthesis was analogous to 6a with 8c as the starting material. The product was obtained as a white solid, yield = 19.7%, mp: 92.1-94.3°C.

2-amino-N-(2-((2-oxo-2H-chromen-7-yloxy)methyl)phenyl)pentanamide

hydrochloride (Nva-OABA-7HC). The synthesis was analogous to Ala-PABA-7HC with **9b** as the starting material. The product was obtained as a white solid, yield = 95.1%, mp:230.7-232.2°C. ¹H-NMR (D₂O, 300 MHz): δ 7.91 (d, 1 H, *J* = 9.6 Hz), 7.31-7.57 (m, 5H), 6.94-6.98 (m, 2 H), 6.28 (d, 1H, *J* = 9.6 Hz), 5.13 (d, 1H, *J* = 11.4 Hz), 5.03 (d, 1H, *J* = 11.4 Hz), 4.07 (t, 1H, *J* = 6.2 Hz), 1.61-1.74 (m, 2H), 1.18-1.31(m, 2H), 0.57 (t, 3H, *J* = 7.5 Hz); ¹³C-NMR (DMSO, 150 MHz): δ 168.6, 161.8, 160.7, 155.7, 144.8, 135.2, 131.0, 130.0, 129.4, 129.2, 126.8, 126.2, 113.4, 113.1, 113.0, 101.9, 67.3, 53.0, 33.7, 18.2, 14.0. HRMS (ESI) m/z calcd. for C₂₁H₂₃N₂O₄S ([M + H]⁺) 367.1652; found 367.1644.

2-amino-4-(methylthio)-N-(2-((2-oxo-2*H***-chromen-7-yloxy)methyl)phenyl)butanami de hydrochloride (Met-OABA-7HC). The synthesis was analogous to Ala-PABA-7HC with 9c** as the starting material. The product was obtained as a white solid, yield = 97.3%, mp: 127.5-130.0°C. ¹H-NMR(D₂O, 400 MHz): δ 7.95 (d, 1 H, *J* = 9.5 Hz), 7.38-7.60 (m, 5 H), 6.98-7.01 (m, 2 H), 6.32(d, 1H, *J* = 9.6 Hz), 5.17 (d, 1 H, *J* = 11.0 Hz), 5.08 (d, 1 H, *J* = 11.0 Hz), 4.24 (t, 1H, *J* = 6.0 Hz), 2.48 (t, 2H, *J* = 7.5 Hz), 2.00-2.07 (m, 2H), 1.87 (s, 3H); ¹³C-NMR (DMSO, 150 MHz): δ 168.1, 161.7, 160.7, 155.7, 144.8, 135.0, 131.2, 130.0, 129.2, 129.1, 126.8, 126.3, 113.4, 113.1, 113.1, 102.0, 67.2, 52.5, 31.4, 28.8, 14.8. HRMS (ESI) m/z calcd. for C₂₁H₂₃N₂O₄S ([M + H]⁺) 399.1373; found 399.1385.

Scheme S3. Synthesis of probe Ala-OAPA-7HC.

10a and 11 were synthesized according to literature procedures ²⁻³.

methyl 3-(2-(((9*H***-fluoren-9-yl)methoxy)carbonyl)propanamido)picolinate (12a).** To a stirred solution of **11** (2.67 g, 8.0 mmol) and Pyridine (3 mL, 36 mmol) in 50 mL dioxane was added **10a** (0.63 g, 4.0 mmol), the mixture was refluxed at 120°C for 1 hour. After cooling and concentration, the residue was redissolved in AcoEt (200 mL) and

washed with saturated NaHCO₃ (50 mL*3), brine (50 mL*1), dried over anhydrous MgSO₄ for 24 h. The solution was concentrated under reduced pressure and then recrystallized with AcOEt to yield a white solid yield 0.44 g, yield = 25.0%, mp: 136.6-138.6°C

(9*H*-fluoren-9-yl)methyl 1-(2-(hydroxymethyl)pyridin-3-ylamino)-1-oxopropan-2-yl carbamate (13a) The synthesis was analogous to 4a with 12a as the starting material. The product was obtained as a white solid, yield = 17.9%, mp:166.8-168.7°C

(3-(2-(((9H-fluoren-9-yl)methoxy)carbonyl)propanamido)pyridin-2-yl)methyl

methanesulfonate (14a) The synthesis was analogous to 5a with 13a as the starting material. The product was obtained as a white solid, yield = 66.6%, mp:139.3-141.7°C

(9H-fluoren-9-yl)methyl 1-oxo-1-(2-((2-oxo-2*H*-chromen-7-yloxy)methyl)pyridin-3-ylamino)propan-2-ylcarbamate (15a). Anhydrous K_2CO_3 (22 mg, 0.16 mmol)was added to the solution of 7-hydroxycoumarin (0.02 g, 0.12 mmol) in 10 mL acetone at room temperature, the mixture was stirred for 30 min. 14a (40 mg, 0.08 mmol) was added to the mixture and stirred at room temperature for 30 min. The mixture was concentrated and redissolved in 100 mL AcOEt, the organic solution was washed with 10% aqueous K_2CO_3 solution (50 mL*5), brine (50 mL*1) and dried over anhydrous MgSO₄ for 24 h. The solution was concentrated under reduced pressure and then purified by combiflash to yield a white solid, 0.03 g, yield = 66.2%, mp:150.1-151.9°C.

2-amino-N-(2-((2-oxo-2*H*-chromen-7-yloxy)methyl)pyridin-3-yl)propanamide

(Ala-OAPA-7HC). The solution of **15a** (30 mg, 0.053 mmol) in 8 mL 20% piperidine-DMF was stirred at room temperature for 1 h. The reation mixture was concentrated under reduced pressure at 90°C to remove piperidine. To the residue was added AcOEt (50 mL), the organic layer was collected and the water layer was extracted by AcOEt (50*3 mL). The combine organic layer was washed by water (50 mL*3), brine (50 mL*1), and dried over anhydrous MgSO₄ for 24 h. The solution was concentrated under reduced pressure and then purified by Pre-TLC to yield a white solid, 0.015 g, yield = 83.0%, 59.0-61.3°C. ¹H-NMR (DMSO, 600 MHz): δ 8.39 (d, 1 H, *J* = 6 Hz), 8.34 (d, 1 H, *J* = 6 Hz), 7.99 (d, 1 H, *J* = 12 Hz), 7.64 (d, 1H, *J* = 12 Hz), 7.44 (dd, 1 H, *J* = 12 Hz, 6 Hz), 7.13 (d, 1 H, *J* = 6 Hz), 7.07(dd, 1H, *J* = 12 Hz, 6 Hz), 6.31 (d, 1 H, *J* = 12 Hz), 5.38 (s, 2 H), 3.45 (q, 1 H, *J* = 6 Hz), 1.24 (d, 3H, *J* = 6 Hz); ¹³C-NMR (DMSO, 150 MHz): 175.8, 161.4 160.7 155.6 145.9 144.7, 144.5, 134.4 129.9, 129.6 124.6 113.4, 113.3, 113.3 102.4 70.6, 51.2, 21.4; HRMS m/z calcd. for C₁₈H₁₈N₃O₄ ([M + H]⁺) 340.1292; found 340.1287.

3. Reference

- 1. L. Z. Chen, J. J. Mou, Y. Y. Xu, H. Fang and W. F. Xu, *Drug Discov Ther*, 2011, 5, 61-65.
- 2. L. A. Carpino, J. Xia and A. El-Faham, *The Journal of Organic Chemistry*, 2003, **69**, 54-61.
- 3. M. Beyermann, M. Bienert, H. Niedrich, L. A. Carpino and D. Sadat-Aalaee, The Journal of

Organic Chemistry, 1990, 55, 721-728.

4. H. Huang, H. Tanaka, B. D. Hammock and C. Morisseau, *Analytical Biochemistry*, 2009, **391**, 11-16.

4. Cell culture and inhibition assay

4.1 IC₅₀ assay on enzyme level

IC₅₀ of bestatin on enzyme level against APN were determined as previously described¹ using Ala-PABA-7HC (25 μ M final concentration) or *L*-Leu-*p*-nitroanilide (400 μ M final concentration) as the substrates and porcine kidney aminopeptidase (BioCol GmbH) as the enzyme in a tris-HCl buffer (100 mM, pH 7.5). The hydrolysis of the substrate was monitored by following the changes in the ratios of fluorescent intensities at 450 and 390 nm (λ ex = 330 nm) for **Ala-PABA-7HC** or in absorbance measured at 405 nm for *L*-Leu-*p*-nitroanilide. All solutions of the inhibitor were prepared in the assay buffer. All inhibitors were preincubated with APN for 30 min at 37°C. The assay mixture, which contained the inhibitor solution (with its concentration from 0.205-210 μ M), the enzyme solution (1 mIU/mL for Ala-PABA-7HC, 5 mIU/mL for *L*-Leu-*p*-nitroanilide final concentration), and the assay buffer, was adjusted to 200 μ L. IC₅₀ values were calculated by nonlinear regression of at least five data points using SigmaPlot (Figure S1).

Figure S1. Inhibition of porcine kidney APN by bestatin using colorimetric (*L*-Leu-*p*-nitroanilide) and retiometric fluorescent (**Ala-PABA-7HC**) assays.

4.2 IC₅₀ assay on cell level

Human ovarian clear cell carcinoma cell (ES-2) was grown in RPMI-1640 medium supplemented with 10% (v/v) fetal bovine serum in an atmosphere of 5% CO₂, 95% air at

37 °C. IC₅₀ of bestatin against APN expressed on the surface of ES-2 using Ala-PABA-7HC as substrate was determined as the method described above except using 20,000 cell to replace 1mIU enzyme, and using RPMI-1640 medium to replace the tris-HCl buffer.

 IC_{50} of bestatin against APN expressed on the surface of ES-2 by using *L*-Leu-*p*-nitroanilide as substrate was similarly examined to IC_{50} assay at the enzyme level except the followings:

1) Using 150,000 cells to replace 5mIU enzyme, and using PBS (Na₂HPO₄, 10mM, PH 7.4) buffer to replace the tris-HCl buffer; 2) Cells were removed by centrifuging before measuring the absorbance at 405 nm. IC₅₀ values were calculated by nonlinear regression of at least five data points using SigmaPlot (Figure S2).

Figure S2. Inhibition of APN expressed on the surface of ES-2 cell by bestatin using colorimetric (*L*-Leu-*p*-nitroanilide, left) and retiometric fluorescent (**Ala-PABA-7HC**, right) assays.

4.3 Vmax and Km

Kinetic constants (Vmax and Km) were determined following the methods described in the literature ⁴. For substrate **Ala-PABA-7HC** and *L*-Leu-AMC, an enzyme concentration of 0.005 IU/ml and [S] final between 0.0025 and 1.6 mM were used. For substrate *L*-Leu-*p*-nitroanilide, an enzyme concentration of 0.05 IU/ml and [S] final between 0.0025 and 1.6 mM were used. The assays were performed in quadruplicate. Km and Vmax were calculated by Lineweaver-Burk plot using SigmaPlot 12.

4.3 LOD

The LOD was defined as the amount of enzyme needed to generate activity that was three times the value of the blank. **LODs** were determined as the following, for substrate **Ala-PABA-7HC** and *L*-Leu-AMC, an enzyme concentration between 0.156 and 10.0 mIU/well and [S] final 22.5 μ M were gentlely shaked at 37°C for 30 min. The hydrolysis

of the substrate was monitored by following the changes in the ratios of fluorescent intensities at 450 and 390 nm ($\lambda ex = 330$ nm) for **Ala-PABA-7HC** or the changes in fluorescent intensities at 465 nm for *L*-Leu-AMC. For *L*-Leu-*p*-nitroanilide, the enzyme concentration was between 0.156 and 10.0 mIU/well, and [S] final was 225 μ M, and the shaking time was 30 min, and the hydrolysis of the substrate was monitored by following the changes in absorbance measured at 405 nm. The assays were performed in quadruplicate. LODs were calculated by linear curves fitting using SigmaPlot 12.

Figure S3. LOD for Ala-PABA-7HC, Leu-AMC and Leu-p-nitroanilide.

5. Fluorometeric Analysis

Buffer reagents were purchased from Aldrich and Acros and were used without purification. Water used for the fluorescence studies was doubly distilled and further purified with a Mill-Q filtration system. Vario skan (thermo electron corporation) was used for all fluorescent studies. Solutions of compounds **Ala-PABA-7HC**, **Nva-PABA-7HC**, **Met-PABA-7HC** were prepared in 0.1 M phosphate buffer at pH 7.4 (0.2% DMSO).

Figure S4 The emission spectrial of probes **Ala-PABA-7HC** (500 μM), **Nva-PABA-7HC** (500μM), **Met-PABA-7HC** (500 μM) and 7-hydroxy coumarin (50 μM), excitation at 330 nm.

6.Mechanism study

HRMS analysis was used for mechanism study, Figture S5 showed the structures of hydrolyzed products and their calculated m/z in Mass spectrometer. Figture S6 showed HRMS result after after adding 0.05 IU APN to the solution of **Ala-PABA-7HC** (200 μ M) for 30 min. All of the hydrolyzed products had been found in the HRMS.

Figture S5. structures of hydrolyzed products and their calculated m/z in Mass spectrometer.

Figure S6. HRMS. 30 min after adding 0.05 IU APN to the solution of Ala-PABA-7HC ($200 \mu M$)

7. Stability of Ala-PABA-7HC

Stability of **Ala-PABA-7HC** in tris-HCl buffer and artificial gastric juice was tested by measurement of the time course for the generation of fluorescence ($\lambda_{ex} = 330$ nm, $\lambda_{em} = 450$ nm) in a solution of 100 μ M.

Figure S7. Time course for the generation of fluorescence (Ex = 330 nm, Em = 450 nm) of **Ala-PABA-7HC** (100 μ M) in the solution of tris-HCl buffer (100 mM, pH=7.5) and artificial gastric juice.

8. ¹H NMR spectra

Figure S8. ¹H NMR (400 MHz) spectrum of Probe Ala-PABA-7HC.

Figure S9. ¹H NMR (600 MHz) spectrum of Probe Nva-PABA-7HC.

Figure S10. ¹H NMR (400 MHz) spectrum of Probe **Met-PABA-7HC**.

Figure S11. ¹H NMR (300 MHz) spectrum of Probe **Nva-OABA-7HC**.

Figure S12. ¹H NMR (400 MHz) spectrum of Probe Met-OABA-7HC.

Figure S13. ¹H NMR (600 MHz) spectrum of Probe Ala-OAPA-7HC.

7.¹³C NMR spectra

Figure S14. ¹³C NMR (150 MHz) spectrum of Probe Ala-PABA-7HC.

Figure S15. ¹³C NMR (150 MHz) spectrum of Probe **Nva-PABA-7HC**.

Figure S16. ¹³C NMR (150 MHz) spectrum of Probe Met-PABA-7HC.

Figure S17. ¹³C NMR (150 MHz) spectrum of Probe Nva-OABA-7HC.

Figure S19. ¹³C NMR (150 MHz) spectrum of Probe Ala-OAPA-7HC

8. HRMS

x10 °	+ESI Scan (0.14 m	in) Frag=17	5.0V SDUL	-014-066a	d Subtract			
2.4								
2.2								
2					333			
1.8					39.1:			
16					33			
1.0								
1.4-								
1.2-								
1-								
0.8-						72		
0.6						0.13		
						and the second s		
0.4						w.		
0.4						34		
0.4						R.		
0.4 0.2- 0-	331 332 33	13 334 3	35 336	337 338 Counts	339 3 vs. Mass-to	40 341 342 o-Charge (m/z)	343 344 345	5 346 347 348
0.4 - 0.2 - 0 -	331 332 33	13 334 3 Score	35 336 Mass	337 338 Counts Mass (MFG)	339 3 vs. Mass-to Diff (ppm)	40 341 342 o-Charge (m/z) Diff (abs. ppm)	343 344 345 Diff (mDa)	5 346 347 348
0.4 - 0.2 - 0 -	331 332 33 Formula C19 H18 N2 04	13 334 3 Score 97.98	35 336 Mass 338.126	337 338 Counts Mass (MFG) 338.1267	339 3 vs. Mass-to Diff (ppm) 1.87	40 341 342 -Charge (m/2) Diff (abs. ppm) 1.87	343 344 345 Diff (mDa) 0.63	5 346 347 348]
0.4 - 0.2 - 0 -	331 332 33 Formula C19 H18 N2 C4	3 334 3 Score 97.98	35 336 Mass 338.126	337 338 Counts Mass (MFG) 338.1267	339 3 vs. Mass-to Diff (ppm) 1.87	40 341 342 -Charge (m/z) Diff (abs.ppm) 1.87 Score (MEG. mass)	343 344 345 Diff (mDa) 0.63	5 346 347 348
0.4 - 0.2 - 0 - Name Species	331 332 33 Formula C19 H18 N2 C4 Ion Formula	3 334 3 Score 97.98 m/z 339 1339	35 336 Mass 338.126 Height	337 338 Counts Mass (MFG) 338.1267 Score (MFG) 07.98	339 3 vs. Mass-to Diff (ppm) 1.87 core (MFG, M 97.98	40 341 342 -Charge (m/z) Diff (abs. ppm) 1.87 Score (MFG, mass) 97.4	343 344 345 Diff (mDa) 0.63 Score (MFG, abund) 9.9.4	5 346 347 348 Score (MFG, Iso, spacing) 97.46
0.4 - 0.2 - 0 - Name Species M+H)+	331 332 33 Formula C19 H18 N2 O4 ton Formula C19 H19 N2 O4	3 334 3 Score 97.98 m/z 339.1339	35 336 Mass 338.126 Height 1646408.8	337 338 Counts Mass (MFG) 338.1267 Score (MFG) 97.98	339 3 vs. Mass-to Diff (ppm) 1.87 core (MFG, M 97.98	40 341 342 -Charge (m/2) Diff (abs. ppm) 1.87 Score (MFG, mass) 97.4	343 344 345 Diff (mDa) 0.63 Score (MFG, abund) 99.4	5 346 347 348 Score (MFG, Iso. spacing) 97.46
0.4 - 0.2 - 0 - Name Species M+H)+	331 332 33 Formula C19 H18 N2 O4 Ion Formula C19 H19 N2 O4	333343 Score 97.98 m/z 339.1339 m/z (Calc)	35 336 Mass 338.126 Height 1646408.8	337 338 Counts Mass (MFG) 338.1267 Score (MFG) 97.98 Diff (mDa)	339 3 vs. Mass-to Diff (ppm) 1.87 core (MFG, M 97.98 Height	40 341 342 -Charge (m/z) Diff (abs. ppm) 187 Score (MFG. mass) 97.4 Height (Calc)	343 344 348 Dtf (mDa) 0.63 Score (MFG, abund) 99.4 Height %	5 346 347 348 Score (MFG, iso, spacing) 97,46 Height % (Cakc)
0.4 - 0.2 - 0 - Name Species M+H)+	331 332 33 Formula C19 H18 N2 O4 Ion Formula C19 H19 N2 O4 mV2 339 1333	3 334 3 Score 97.98 m/z 339.1339 m/z (Calc) 339.1339	35 336 Mass 338.126 Height 1646408.8 Diff (ppm) 1.89	337 338 Counts Mass (MFG) 338.1267 Score (MFG) 97.98 Diff (mDa) 0.6	339 3 vs. Mass-to Diff (ppm) 1.87 core (MFG, M 97.98 Height 1646408.8	40 341 342 o-Charge (m/z) Diff (abs. ppm) 1.87 1.87 Score (MFG, mass) 97.4 Height (Calc) 1556596.2 2	343 344 345 Diff (mDa) 0.63 Score (MFG, abund) 99.4 Height % 100	5 346 347 348 Score (MFG, Iso. spacing) 97.46 Height % (Calc) 10
0.4 - 0.2 - 0 - Name Species 3(++f)+	331 332 33 Formula C19 H18 N2 O4 Ion Formula C19 H19 N2 O4 m/2 339 1333 340 1332	13 334 3 97.98 m/z 339.1339 m/z (Calc) 339.1339 340.1371	35 336 Mass 338.126 Height 1646408.8 Diff (ppm) 1.89 40.16	337 338 Counts Mass (MFG) 338.1267 Score (MFG) 97.98 Diff (mDa) 0.6 -0.1	339 3 vs. Mass-to Diff (ppm) 1.87 core (MFG, M 97.98 Height 1646408.8 370471.1	40 341 342 -Charge (m/z) Diff (abs. ppm) 1.87 Score (MFG. mass) 97.4 Height (Calc) 1556596.2 356876 9	343 344 348 D81 (mDa) 0.63 Score (MFG, abund) 99.4 Height % 100 22.5	5 346 347 348 Score (MFG, iso. specing) 97.46 Height % (Calc) 100 21.7
0.4 - 0.2 - 0 - Name Species 34+H)+	331 332 33 Formula C19 H18 N2 04 Ion Formula C19 H19 N2 04 M2 339 1333 340 1322 341 1334	13 334 3 97.98 m/z 339.1339 m/z (Calc) 339.1339 340.1331 340.1331	35 336 Mass 338.126 Height 1646408.8 Diff (ppm) 1.89 40.16 0.97	337 338 Counts Mass (MFG) 338.1267 97.98 Diff (mDa) 0.6 0.1 0.3	339 3 vs. Mass-tr Diff (ppm) 1.87 core (MFG, M 97.98 Height 1646408.8 370471.1 48694.1	40 341 342 -Charge (m/z) Diff (abs. ppm) 1.87 5core (MFG, mass) 97.4 Height (Calc) 1555596.2 358676.9 50582.7	343 344 345 Diff (mDa) 0.63 Score (MFG, abund) 99.4 Height % 100 22.5 3	5 346 347 348 Score (MFG, Iso. specing) 97.46 Height % (Calc) 100 21.7 3.1

Figure S20. High resolution mass spectrum of Probe Ala-PABA-7HC.

Figure S21. High resolution mass spectrum of Probe Nva-PABA-7HC.

x10 °	+ESI Scan (0.12 n	nin) Frag=17	5.0V SDUI	014-066c.	d Subtract			
5.5								
5								
40				375				
4.3				39.1				
4-				3				
3.5								
3								
2.5								
2-					03			
1.5					0.14			
					385			
					and the second sec			
					H			
0.5					-401.			
0.5				lesi	401.			
0.5	393 394 3	95 396	397 398	399 4 Counts	00 401 vs. Mass-te	402 403 40 o-Charge (m/z)	04 405 406	407 408 409
0.5- 0-	393 394 3 Formula	95 396 Score	397 398 Mass	399 4 Counts Mass (MFG)	00 401 vs. Mass-to Diff (ppm)	402 403 40 o-Charge (m/z) Diff (abs. ppm)	04 405 406 Diff (mDa)	407 408 409
0.5- 0-	393 394 3 Formula C21 H22 N2 O4 S	195 396 Score 99.04	397 398 Mass 398.1302	399 4 Counts Mass (MFG) 398.13	00 401 vs. Mass-to Diff (ppm) -0.48	402 403 40 o-Charge (m/z) Diff (abs. ppm) 0.48	04 405 406 Diff (mDa) -0.19	407 408 409
0.5- 0-	393 394 3 Formula C21 H22 N2 O4 S	95 396 Score 99.04	397 398 Mass 398.1302	399 4 Counts Mass (MFG) 398.13	00 401 vs. Mass-to Diff (ppm) -0.48	402 403 40 o-Charge (m/z) Diff (abs. ppm) 0.48	04 405 406 Diff (mDa) -0.19	407 408 409
0.5- 0 Name Species	393 394 3 Formula C21 H22 N2 O4 S Ion Formula	99.04	397 398 Mass 398.1302 Height	399 4 Counts Mass (MFG) 398.13 Score (MFG) 00.04	00 401 vs. Mass-to Diff (ppm) -0.48 core (MFG, M	402 403 40 o-Charge (m/z) Diff (abs. ppm) 0.48 Score (MFG, mass) rog a	04 405 406 Diff (mDa) -0.19 Score (MFG, abund) 07.78	407 408 409
0.5- 0 Name Species M+H)+	393 394 3 Formula C21 H22 N2 O4 S Ion Formula C21 H23 N2 O4 S	95 396 99.04 m/z 399.1373	397 398 Mass 398,1302 Height 3853037	399 4 Counts Mass (MFG) 398.13 Score (MFG) 99.04	00 401 vs. Mass-to Diff (ppm) -0.48 core (MFG, M 99.04	402 403 40 o-Charge (m/z) Diff (abs. ppm) 0.48 Score (MFG, mass) 99.8	04 405 406 Diff (mDa) -0.19 Score (MFG, abund) 97.78	407 408 409] Score (MFG, Iso. spacing 99.04
0.5- 0 Name Species M+H)+	393 394 3 Formula C21 H22 N2 O4 S Ion Formula C21 H23 N2 O4 S	95 396 Score 99.04 m/z 399.1373 m/z (Colo)	397 398 Mass 398.1302 Height 3853037	399 4 Counts Mass (MFG) 398.13 Score (MFG) 99.04	00 401 vs. Mass-to Diff (ppm) -0.48 core (MFG, M 99.04	402 403 40 o-Charge (m/z) Diff (abs. ppm) 0.48 Score (MFG, mass) 99.8	04 405 406 Diff (mDa) -0.19 Score (MFG, abund) 97.78	407 408 409 Score (MFG, iso. spacing 99.04
Name Name Species M+H)+	393 394 3 Formula C21 H22 N2 C4 S Ion Formula C21 H23 N2 C4 S <i>miz</i> Dip 1375	95 396 99.04 m/z 399.1373 m/z (Calc) 399.1373	397 398 Mass 398.1302 Height 3853037 Diff (ppm) -0.49	399 4 Counts Mass (MFG) 398.13 Score (MFG) 99.04 Diff (mDa)	00 401 vs. Mass-to Diff (ppm) -0.48 core (MFG, M 99.04 Height 3853037	402 403 40 -Charge (m/z) Diff (dbs: ppm) 0.45 Score (MFG, mass) 99.8 Height (Caic) 3940874	04 405 406 Diff (mDa) -0.19 Score (MFG, abund) 97.78 Height % 100	407 408 409 Score (MFG, Iso: spacing 99.04 Height % (Calc) 100
Name Name Species M+H)+	393 394 3 Formula C21 H22 N2 Q4 S Ion Formula C21 H23 N2 Q4 S m/2 309 1375 400, 1439	95 396 Score 99.04 m/z 399.1373 m/z (Calc) 399.1373	397 398 Mass 398.1302 Height 3853037 Diff (ppm) -0.49 0.09	399 4 Counts Mass (MFG) 398.13 Score (MFG) 99.04 Diff (mDa) -0.2 0	00 401 vs. Mass-tu 0.48 core (MFG, M 99.04 Height 3853037 1020263.7	402 403 40 o-Charge (m/z) Diff (abs.ppm) 0.48 Score (MFG, mass) 99.8 Height (Caic) 3340874 97431.1	14 405 406 Diff (mDa) -0.19 Score (MFG, abund) 97.78 Height % 100 25.5	407 408 409 Score (MFG, iso spacing 99.04 Height % (Calc) 100 24.7
0.5- 0 Name Species M+H)+	393 394 3 Formula C21 H22 N2 O4 S Ion Formula C21 H23 N2 O4 S mic 390 1375 400 1403 400 1403	95 396 99.04 m/z 399.1373 m/z (Calc) 399.1373 400.1404 400.1404	397 398 Mass 398.1302 Height 3853037 Diff (ppm) -0.49 0.09 2.09	399 4 Counts Mass (MFG) 398.13 Score (MFG) 99.04 Diff (mDa) -0.2 0 0 0.8	00 401 vs. Mass-tu Diff (ppm) -0.48 core (MFG, M 99.04 Height 3853037 1020263.7 357026.5	402 403 402 -Charge (m/z) Diff (obs. ppm) 0.48 Score (MFG, mass) 99.8 Height (Carc) 3940874 971431.1 32434.6	04 405 406 Diff (mDa) 0.19 Score (MFG, abund) 97.78 Height % 100 25.5 9.3	407 408 409 Score (MFG, iso: spacing 98.04 Height % (Calc) 100 24.7 5.2
0.5- 0 Name Species M+H)+	393 394 3 Formula C21402 N2 04 5 Formula C21402 N2 04 5 M2 1403 N2 04 5 M2 1403 N2 04 5 M2 400, 1403 401, 1385 402, 1387	95 396 99.04 m/z 399.1373 m/z (Calc) 399.1373 400.1404 401.1376 402.1389	397 398 Mass 398.1302 Height 3853037 Diff (ppm) -0.49 0.09 -2.09 0.6	399 4 Counts Mass (MFG) 398.13 Score (MFG) 99.04 Diff (mDa) -0.2 0 -0.3 0.2	00 401 vs. Mass-tu Diff (ppm) -0.48 core (MFG, M 99.04 Height 3853037 1020253.7 357026.5 62988.6	402 403 40 -Charge (m/z) Diff (dbs.ppm) 0.45 Score (MFG, mass) 9-8 Score (MFG, mass) 9-7 Score	04 405 406 017 (mDa) 0.19 Score (MFG, abund) 97.78 Height % 100 26.5 9.3 1.6	407 408 409 Score (MFG, iso, spacing 92.04 Height % (Cac) 100 24.7 3.2 1.5

Figure S22. High resolution mass spectrum of Probe Met-PABA-7HC.

Figure S23. High resolution mass spectrum of Probe Nva-OABA-7HC.

Figure S24. High resolution mass spectrum of Probe Met-OABA-7HC.

Figure S25. High resolution mass spectrum of Probe Ala-OAPA-7HC.