Supporting Information

Photonic and magnetic dual responsive molecularly imprinted polymers: preparation, recognition characteristics and properties as novel sorbent for caffeine in complicated samples

Shoufang Xu,^{ad} Jinhua Li,^a Xingliang Song,^b Junshen Liu,^c Hongzhi Lu,^b and Lingxin Chen*^a

- ^a Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- ^b School of Chemistry & Chemical Engineering, Linyi University, Linyi 276005,
 China
- ^c School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
- ^d University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding author: Tel./Fax: +86 535 2109130.

E-mail address: lxchen@yic.ac.cn (L. Chen).

Scheme S1. Synthesis route for the functional monomer 4-[(4-methacryloyloxy)phenylazo]benzoic acid (MPABA). 1) NaNO₂, 5 M HCl, 0–3 °C; 2) 3 M NaOH, phenol, 0–3 °C; 3) methacrylic acid anhydride, 4-(dimethylamino)pyridine, triethylamine, 40 °C for 24 h, reflux for 2 h; dry THF.

Fig. S1 H-NMR, C-NMR and MS for functional monomer MPABA.

Scheme S2. Preparation processes for surface molecular imprinting on magnetic nanoparticles.

Fig. S2 Effect of dispersion solvent on binding capacity. Experiment conditions: $Fe_3O_4@MIPs$, 30 mg; $C_{caffeine}$, 40 μ M; 3 mL dispersion solvent; 25 °C in the dark for 12 h.