Electronic Supplementary Information

Specific ratiometric fluorescent sensing of Hg²⁺ via the formation of mercury(II) barbiturate coordination polymers

Jiani Wang, Lei Zhang, Qiong Qi, Shunhua Li* and Yunbao Jiang

Contents

- 1. General remarks
- 2. Synthesis and characterization of AnB
- 3. Influence of pH on the self-aggregation of AnB
- 4. Absorption study on the binding stoichiometry between Hg²⁺ and AnB
- 5. Mass spectrometric evidence for the Hg(II)-AnB coordination polymer
- 6. Dynamic light scattering study on the reaction of AnB with Hg²⁺
- 7. Influence of reaction time and pH on Hg²⁺ sensing

1. General remarks

9-Anthraldehyde, barbituric acid and piperidine were purchased from Sigma-Aldrich Co., Ltd. They were used without any further purification. All other reagents were of analytical grade or better and used without further purification. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance II 400 MHz NMR spectrometer. Chemical shifts are reported in parts per million (ppm) relative to the residual DMSO peak (2.50 ppm in the ¹H NMR and 39.43 ppm in the ¹³C NMR) and coupling constants (J) are reported in Hertz (Hz). Electrospray ionisation (ESI) mass spectra were ESQUIRE-3000⁺ mass recorded on a Bruker spectrometer. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra were recorded on a Bruker-Dalton Reflex III mass spectrometer. Absorption and fluorescence spectra were acquired with a Hitachi U-3900 ultraviolet-visible spectrophotometer and a Hitachi F-7000 fluorophotometer, respectively. Dynamic light scattering (DLS) data were collected from a Malvern Zetasizer Nano-zsMPT-2 particle size and zeta potential analyzer.

2. Synthesis and characterization of AnB (Fig. S1-S3)

A mixture of 9-anthraldehyde (206 mg, 1.0 mmol), barbituric acid (164 mg, 1.0 mmol) and piperidine (1 mL) in ethanol (40 mL) was refluxed under nitrogen atmosphere for about 7 h and then cooled to room temperature to give a red precipitate. The solid was collected by filtration, washed with methanol and dried under vacuum. Yield: 240 mg, 75%. The selected spectroscopic data of **1** are as follows. ¹H NMR (400MHz, DMSO-d₆, ppm): δ = 8.99 (s, 1H), 8.67 (s, 1H), 8.15 (d, 2H, *J* = 7.6 Hz), 7.97 (d, 2H, *J* = 8.8 Hz), 7.57-7.49 (m, 4H). ¹³C NMR (100MHz, DMSO-d₆, ppm): δ = 162.85, 160.99, 151.70, 150.98, 131.02, 129.99, 129.15, 128.24, 128.12, 126.70, 126.01, 125.84. ESI-MS: *m/z* calcd for [C₁9H₁2N₂O₃]⁺, 316.31; found, 316.5.

Fig. S1 ¹H NMR spectrum (400MHz, DMSO-d₆) of **AnB**. The signals for N-*H* were not obtained in DMSO-d₆ because of the hydrogen bonding interaction between the barbital moieties.

Fig. S2 13 C NMR spectrum (100MHz, DMSO-d₆) of AnB. -Sl 2 -

Fig. S3 ESI mass spectrum of AnB.

3. Influence of pH on aggregation of AnB (Fig. S4)

Fig. S4 Influence of pH on absorption of **AnB** $(1.00 \times 10^{-5} \text{ M})$ in aqueous solution. pH 5.8–8.0: buffered by 0.02 M KH₂PO₄-K₂HPO₄; pH 8.5–11.0: buffered by 0.02 M NH₄Cl-NH₃. Inset: absorption spectrum at pH 7.5.

4. Absorption spectral study of the stoichiometry between Hg²⁺ and AnB (Fig. S5)

Fig. S5 Absorbance ratio (412 nm to 368 nm) of **AnB** (1.00×10^{-5} M) as a function of Hg²⁺ concentration in aqueous solution. pH: 9.0, buffered by 0.02 M NH₄Cl-NH₃.

5. Mass spectrometric evidence for Hg²⁺-AnB coordination polymer (Fig. S6)

Fig. S6 Proposed fragments of Hg^{2+} -AnB coordination polymer in mass spectrometric analysis (Figure 3). MS signals at m/z 674.63, 878.74, 1068.03, 1301.57, 1507.51, 1746.89 and 1924.54 are assigned to {2 CnB + 2 Hg}, {2 CnB + 3 Hg}, {2 AnB + 2 Hg + Cl}, {2 AnB + 3 Hg + 2Cl}, {2 AnB + 2 CnB + 3 Hg}, {3 AnB + 4 Hg} and {3 AnB + CnB + 4 Hg + Cl}, respectively.

6. Dynamic light scattering study on the reaction of AnB with Hg²⁺ (Fig. S7)

Fig. S7. Sizes of the particles in the aqueous solutions of **AnB** $(1.00 \times 10^{-5} \text{ M})$ in the presence of different amount of HgCl₂ as revealed by the dynamic light scattering experiments. pH: 9.0, buffered by 0.02 M NH₄Cl-NH₃.

7. Influence of reaction time and pH on Hg²⁺ sensing (Fig. S8–S9)

Fig. S8 Time dependence of fluorescence emission of **AnB** $(1.00 \times 10^{-5} \text{ M})$ in the absence (triangles) and presence (squares) of HgCl₂ $(1.00 \times 10^{-5} \text{ M})$. pH: 9.0, buffered by 0.02 M NH₄Cl-NH₃. Excitation wavelength: 367 nm.

Fig. S9 Influence of pH on fluorescence emission of **AnB** $(1.00 \times 10^{-5} \text{ M})$ in the absence (triangles) and presence (squares) of HgCl₂ $(1.00 \times 10^{-5} \text{ M})$. pH 5.8–8.0: buffered by 0.02 M KH₂PO₄-K₂HPO₄; pH 8.5–11.0: buffered by 0.02 M NH₄Cl-NH₃. Excitation wavelength: 367 nm.