Table S1

Anodic peak current (i_{pa}) , peak potential difference (ΔE_p) and the heterogeneous electron transfer rate constant (k^0) estimated from CV in 0.1M PBS (pH 7.0) containing 5mM $[Fe(CN)_6]^{3-/4-}$ at scan rate = 50 mV s⁻¹

Electrode	<i>i_{pa}</i> (μA)	$\Delta E_{\mathbf{p}} \left(\mathbf{mV} \right)$	k^{θ} (cm s ⁻¹)
GCE	80	143	1.599×10^{-3}
Ch/GCE	145	89	5.490×10^{-3}
DWNTs/Ch/GCE	201	81	8.133×10^{-3}

Table S2

Summary of the oxidation currents and oxidation potentials for the electrochemical detection of AA, DA and UA using GCE, Ch/GCE, DWNTs/GCE and DWNTs/GCE

Analyte	Type of electrode	E _{pa} (V)	I _{pa} (μA)
AA	GCE	0.227	8
	Ch/GCE	0.012	24
	DWNTs/GCE	0.045	43
	DWNTs/Ch/GCE	0.025	72
DA	GCE	0.237	13
	Ch/GCE	0.205	34
	DWNTs/GCE	0.254	95
	DWNTs/Ch/GCE	0.261	188
UA	GCE	0.341	23
	Ch/GC	0.347	42
	DWNTs/GCE	0.395	111
	DWNTs /Ch/GCE	0.418	209

Table S3

Samples	Added (µM)	Found (µM)	Recovery (%)
Vitamin C tablet	20	20.73(±0.04)	103.6
Orange juice	15	15.18(±0.07)	101.2
Lemon juice	10	10.18(±0.10)	101.8

Determination of ascorbic acid in pharmaceutical and fruit juices

Determination of dopamine in urine samples

Samples	Added (µM)	Found (µM)	Recovery (%)
1	3	2.96(±0.03)	98.7
2	4	4.06(±0.05)	101.5
3	5	4.95(±0.02)	99.0

Determination of uric acid in urine samples

Samples	Added (µM)	Found (µM)	Recovery (%)
1	2	2.16(±0.01)	108.0
2	4	4.21(±0.10)	105.2
3	8	8.05(±0.04)	100.6

Numbers in the parenthesis show the standard deviation for n = 3

Fig.S1. Plot of Q-t curves for the GCE (a) and DWNTs/Ch/GCE (b) in 0.5mM $K_3[Fe(CN)_6]$ containing 0.5M KCl (A); plot of Q-t^{1/2} curves for the GCE (a) and DWNTs/Ch/GCE (b) in 0.5mM $K_3[Fe(CN)_6]$ containing 0.5M KCl (B).

Fig. S2. (A) CVs of the DWNTs/Ch/GCE to AA, DA and UA in 0.1M PBS (pH 7.0) of different pH (curves from a to g are obtained in pH of 4-10); (B) Effect of pH on the potential; (C) Effect of pH on the current.

Fig. S3. DPVs at DWNTs/Ch/GCE in 0.1M PBS (pH 7.0) (A) containing DA (16 μ M), UA (36 μ M) and different concentrations of AA (from inner to outer): 0, 5, 96, 144, 240, 352, 560, 800, 1088 and 1312 μ M; (B) containing AA (800 μ M), UA (600 μ M) and different concentrations of DA (from inner to outer): 0, 0.6, 5.8, 10.4, 20, 72, 168, 480, 672, 880 and 1072 μ M; (C) containing AA (800 μ M), DA (48 μ M) and different concentrations of UA (from inner to outer): 0, 3, 5, 16, 25, 40, 100, 200, 400 and 800 μ M. Corresponding calibration curves of (D) AA, (E) DA, (F) UA.

Fig. S4. Amperometric responses of (A) 20 μ M AA at 0.00V, (B) 8 μ M DA at 0.25V, (C) 10 μ M UA at 0.40V in 0.1M PBS (pH 7.0) + 0.1M KCl over a long period of operational time, 3000s. Insets: the response time of DWNTs/Ch/GCE to achieve steady-state current for (A) 0.57s, (B) 0.66s, (C) 0.83s (n=3).

Fig. S5. The amperometric responses of the interference test in 0.1M PBS (pH 7.0) + 0.1M KCl at 0.00V of AA, 0.25V of DA, and 0.40V of UA with 20μ M, 8μ M, and 10μ M, respectively, and other interference species in a certain molar ratio.