
Appendix 2

2.1 Symbolic dynamics and analysis blocks

Complex nonlinear dynamical systems can be modelled and
studied in the context of coarse-graining, i.e., they can viewed
as information capacitors containing discrete series of sym-
bolic messages.1–5 Coarse-graining can be outlined through
symbolisation, a process which allows partitioning of the full
continuous phase space into finite number of cells.1 In this
manner, symbolisation provides a rigorous way of studying
actual complex dynamics under finite precision. This opera-
tional procedure is often referred as symbolic dynamics.1,4–7

One of the merits of symbolic dynamics is that it provides a
strong link between dynamical systems and information the-
ory.1,4,5,8 According to symbolic dynamics, time-series are
re-organised into new symbolic sequences, in which every
symbol stands for a partition of the initial time-series. Ev-
ery different symbol is represented by an alphabet letter and
the whole procedure is called lettering.1–3,6,7,9 The new sub-
sequences of symbols are called words.2,3,7 Reading of sym-
bolic sub-sequences can be derived through the processes of
lumping or gliding.2,3,7 Lumping is the interpretation of sym-
bolic words through independent sequential discrete portions
of certain number of words, called blocks, opposed to gliding,
where the portions are not independent.2,3,7 Note that gliding
is the standard convention in literature and is often referred
also under the term sliding or moving-frame.2,3,7 Block time-
series symbolisation prerequisites selection of λ different let-
ters from an alphabet and choice of the size, n, of blocks
or words, i.e., the number of sequential letters that will be
treated as a whole. Depending on λ and n the maximum
number, N of different words is determined in the selected
alphabet. For example in a λ = 2 lettering, a threshold C
may be considered. Each value above this threshold may
be symbolised as 1 and each below, as 0.2,3,7 Initial time-
series, for instance, of length L = 20, may be transformed
through symbolic dynamics to e.g. 11001010111000101010
in the λ = 2 lettering. Through lumping, the λ = 2-letter
symbolic time-series may be organised in sets of n = 2
blocks as (11|00|10|10|11|10| 00|10|10|10|), in which each
block is one of the N = 22 = 4 different words in this let-
tering, i.e., (00, 01, 10,11). The same symbolic sequence
through gliding-sliding will be treated as (11|10|00|01|10|01|
10|01|11|11|10|00| 00|01|10|01|10|01| 10|01|10), i.e., the se-
quence will be of greater length. The λ = 2 letter se-
quence may be also organised in blocks of n = 3 letters with
maximum of N = N3,2 = nλ = 32 = 9 different words,i.e.,
(000, 001, 010, 100, 110, 011, 010, 001, 111). Other se-
quences of words may be generated as well. In general,1–3,6,7,9

through symbolic dynamics a L-length time-series is trans-
formed to a symbolic time-series sequence, [A1,A2...An...AL],

composed by λ different letters, [A1,A2...Aλ ], from a λ -length
alphabet. Symbolic time-series sequences are re-organised
in n-sized words-blocks composed by letters of the alphabet
[A1,A2...Aλ ]. In linguistics the word size is unconfined and,
hence, linguistic words contain some or, potentially, all let-
ters. On the other hand, in symbolic dynamics, the words
are of fixed lengths n, n ≥ λ and are chosen from Nmax =
Nn,λ = nλ different fixed-sized words in the [A1,A2...Aλ ] al-
phabet. In this manner, the symbolic time-series are re-
organised as ...A1...An︸ ︷︷ ︸

B1

An+1...A2n︸ ︷︷ ︸
B2

...Ain+1...A(i+1)n︸ ︷︷ ︸
Bi+1

... blocks,

where i is the consecutive number of the block, i.e., i =
1...Total number of blocks. In lumping the n words-blocks
are sequentially independent, on the contrary to the depen-
dent sequential blocks in the gliding-sliding process. The to-
tal number of blocks of the symbolic time-series is greater for
gliding-sliding and hence more computation is needed. The
probability of occurrence of a block, [A1,A2...An], of size n is
calculated by

p(n)(A1,A2...An)=
Number of occurences of block [A1,A2...An]

Total number of blocks
(2.1)

2.2 Block entropy analysis

In the framework of complex signal analysis, specific entropy
methodologies based on symbolic dynamics have been devel-
oped in the previous decade.5,10–13 All these methodologies
are referred as block entropies. Most common techniques rely
on the extension of Shannon entropy14

HS =−∑ pilnpi (2.2)

where pi is the number of possible microscopic config-
urations. Note that equation (2.2) represents the classical
Boltzman's entropy for the Gibbs canonical ensemble (B-
Gentropy).9 Combining equations (2.1) and (2.2), the Shan-
non block entropy, H(n) of n-sized blocks is derived by (2.3):

H(n) =− ∑
(A1,A2,...An)

p(n)(A1,A2, ...An)lnp(n)(A1,A2, ...An)

(2.3)
Equation (2.3) calculates the entropy due to all possible

words. It is a measure of uncertainty or disorder, i.e., it mea-
sures organisation deficiency of a complex system. It also
gives the average amount of information necessary to predict
a sub-sequence of words or blocks of length n

From equation (2.3), the Shannon block entropy per letter
may be derived by:

h(n) =
H(n)

n
=

− ∑
(A1,A2,...An)

p(n)(A1,A2, ...An)lnp(n)(A1,A2, ...An)

n
(2.4)
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This entropy may be interpreted as the average uncertainty
of a block of size n per letter.6

From the Shannon block entropy the conditional entropy
may be derived by equation (2.5):

h(n) = H(n+1)−H(n) (2.5)

The conditional entropy h(n) measures the uncertainty of
predicting a state one step into the future, provided a history
of the preceding n states.6

For physical phenomena with long-range interactions or
long-range memory effects, an important property observed is
the violation of Boltzmann-Gibbs (B-G) statistics.15 A gen-
eralised expression of the B-G statistics has been proposed
based on multifractal concepts by Tsallis16,17

Sq =
1

q−1
(1−

W

∑
i=1

pq
i ) (2.6)

where pi denotes, in these references, the probabilities of a
sequence and W their total number. q is a real nuber which
is the measure of non-extensivity of the system.16,17 Using
p(q−1)

i = e(q−1) ln(pi) ∼ 1+(q−1) ln(pi) in the limit q→ 1 the
B-G entropy is derived.6,9 The generalization of B-G expres-
sion, suggests the non-extensive statistical mechanics. The
entropic index q characterises the degree of nonadditivity in
the following pseudo-additivity rule2,3,6,9,16

Sq(A,B) = Sq(A)+Sq(B)+(1−q)Sq(A)Sq(B) (2.7)

with q > 1 referring to sub-additivity and q < 1 to super-
additivity. Systems that called non-extensive, have special
probability correlations and extensivity may occur for Sq for
specific value of index q.18 Tsallis entropy has been used in
terms of symbolic dynamics for electromagnetic time series
prior to earthquakes.2,3,6,9,16,19 By properly adjusting symbol-
isation in accordance to (2.3) and (2.4), the Tsallis entropy of
a block [A1,A2...An] of length n in a λ -letter alphabet can be
calculated by2,3,6,9,19

Sq(n) =
1

q−1
(1− ∑

(A1,A2,...An)
[p(n)(A1,A2...An)]q) (2.8)

where p(n)(A1,A2...An) is the probability of occurrence of
block [A1,A2...An]. As already mentioned, high level of organ-
isation is indicated when low values of Tsallis entropy are pro-
duced. Tsallis entropy has been explored in the field of earth-
quake time series analysis.6,9,15,20–22 Recent work has also
been published in biomedical imaging, with suggestions in re-
placing Shannon's theorem23 and bioinformatics.23 An inter-
connection between fractals and Tsallis entropy that has been
introduced in previous decade could provide natural frame for
studying fractally structured systems.24 Moreover, a possible

interconnection could exist between generalized Tsallis statis-
tics and quantum groups.17

From (2.8) the normalised Tsallis entropy may be derived.
The formula for the computation is16

Ŝq(n) =

1
q−1 (1− ∑

(A1,A2,...An)
[p(n)(A1,A2...An)]q)

∑
(A1,A2,...An)

[p(n)(A1,A2...An)]q
(2.9)

where the symbolisation was adjusted in accordance to
equations (2.3) and (2.4) following the approach proposed by
other investigators.6,9,19,20 In equation (2.9), p(n)(A1,A2...An)
is the probability of occurrence of the block [A1,A2...An] and q
is the corresponding real number of equations (2.6),(2.8) and
(2.9).

The appropriate choice of the entropic index q has crucial
meaning for the Tsallis and the normalised Tsallis entropy
computation and requires further exploration for its proper
use.9 For every specific use of Tsallis entropy the ranges of
the q values will result in significant discrimination.17 Non-
additive Tsallis entropy combined with Gutenberg-Richter law
provided excellent fit to seismicities with q-values range from
1.4 to 1.85. The q-values are rooted in a rather solid physical
background and describe the non-additivity of a seismic em-
mision in a correct manner.9 Moreover, index q can be con-
sider as bias parameter with q < 1 refer to rare events and
q > 1 refer to prominent events.22 For pre-eqrthquake electro-
magnetic disturbances, the q-values are restricted in the region
1 < q < 2, and are consistent with several studies that suggest
the upper limit to be equal to 2.9 It is noteworthy that entropic
index q is not a measure of complexity but measures the non-
extensivity of the system.6
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