Supplementary data for

A proof-of-concept fluorescent strategy for highly selective detection of Cr(vi) based on inner filter effect using a hydrophilic ionic chemosensor

Dawei Zhang,^a Zhiyun Dong,^a Xiaozhi Jiang,^a Meiyun Feng,^a Wen Li^{*b} and Guohua

Gao*^a

a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 NorthZhongshan Road, Shanghai, 200062, P. R. China.

b Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences (CAS), 29 Zhongguancun East Road, Beijing, 100190, P.R. China.

*Correspondence: Tel and Fax: +86(21)62233323, ghgao@chem.ecnu.edu.cn

Fig. S1 Effect of pH on the fluorescence intensity at 437 nm of chemosensor 1 $(5 \times 10^{-6} \text{ M})$ in 100% aqueous solution. The pH values of the solution were adjusted by very small amount of HCl and KOH aqueous solution.

Fig. S2 Calculation of the extinction coefficients of $K_2Cr_2O_7$ at 259 nm (red lines) and 437 nm (blue lines) in water (a) and in 98% MeCN aqueous solution (b) respectively. The length of the cuvette used for UV measurement was 1 cm.

Percentage of	Liner range (M)	Detection limit
MeCN		(3σ, M)
50%	2.5×10 ⁻⁶ -2.5 ×10 ⁻⁵	7.5×10 ⁻⁷
90%	1.5×10 ⁻⁶ -1.25 ×10 ⁻⁵	3.6×10 ⁻⁷
98%	5.0×10 ⁻⁷ -1.0 ×10 ⁻⁵	9.2×10 ⁻⁸

Table S1 Analytical performance data for $Cr(v_I)$ detection in MeCN aqueous system.

Fig. S3 (a) Fluorescence titration spectra of chemosensor 1 (5×10^{-6} M) upon addition of different equiv. of Cr(vI) (0 - 280 equiv.) in 100% aqueous solution at pH 4.0. Inset: fluorescence intensity development with the increasing equiv. of Cr(vI). (b) Plot of [H]₀[G]/ Δ I*versus* [G] for calculating the inner filter constant of chemosensor 1 with Cr(vI) in 100% aqueous solution at pH 4.0.

Fig. S4 (a) Fluorescence titration spectra of chemosensor 1 (5×10^{-6} M) upon addition of different equiv. of Cr(vI) (0 - 280 equiv.) in 100% aqueous solution at pH 10. Inset: fluorescence intensity development with the increasing equiv. of Cr(vI). (b) Plot of [H]₀[G]/ Δ I*versus* [G] for calculating the inner filter constant of chemosensor 1 with Cr(vI) in 100% aqueous solution at pH 10.

Fig. S5 (a) Fluorescence decay curve of the chemosensor **1** (5×10^{-6} M) in the absence of Cr(v1). (b) Fluorescence decay curve of chemosensor **1** (5×10^{-6} M) in the presence of 100 equiv. of Cr(v1). The decay curves were fitted to the biexponential function with acceptable χ^2 (1.2 and 1.1 respectively).

Table S2 Fluorescence lifetime of chemosensor 1 in 100% aqueous solution in theabsence and presence of Cr(vi) upon excitation at 259 nm

Complex	τ_1 , ns (%)	τ_2 , ns (%)	χ^2
1 ^a	1.75 (86.34)	3.44 (13.66)	1.2
1 +100eq. Cr(vi)	1.81 (82.84)	3.57 (17.16)	1.1

 $[1] = 5 \times 10^{-6} \text{ M}$

Fig. S6 Partial ¹H NMR spectra of chemosensor **1** (10 mM) in the absence (a) and presence (b) of $Cr(v_1)$ (1 equiv.) in DMSO-d₆.

Fig. S7 Fluorescence Job's plot of chemosensor **1** with Cr(vI) in 100% aqueous solution at pH 4.0 (\mathbf{v}), 6.1($\mathbf{\bullet}$) and 10 ($\mathbf{\star}$) respectively, where [G]+[H] = 5×10⁻⁶ M.

Fig. S8 (a) Fluorescence titration spectra of chemosensor 1 (5×10^{-6} M) upon addition of different equiv. of MnO₄⁻ (0 - 280 equiv.) in 100% aqueous solution at pH 6.1. Inset: fluorescence intensity development with the increasing equiv. of MnO₄⁻. (b) Plot of [H]₀[G]/ Δ Iversus [G] for calculating the inner filter constant of chemosensor 1 with MnO₄⁻ in 100% aqueous solution at pH 6.1.

Fig. S9 Quenching rate at 437 nm of 5×10^{-6} M chemosensor 1 in aqueous solution at pH = 4.0. Dark bars represent the addition of 100 equiv. of anions, and gray bars represent the subsequent addition of 100 equiv. of Cr(vI) to the solution.

Fig. S10 Quenching rate at 437 nm of 5×10^{-6} M chemosensor **1** in aqueous solution at pH = 10. Dark bars represent the addition of 100 equiv. of anions, and gray bars represent the subsequent addition of 100 equiv. of Cr(v₁) to the solution.

Fig. S11 ¹H NMR of chemosensor **1** in DMSO-d₆.

Fig. S12 ¹³C NMR of chemosensor 1 in DMSO-d₆.