Electronic Supplementary Information (ESI)

DNA-stabilized Sliver Nanoclusters with Guanine-enhanced Fluorescence as a Novel Indicator for Enzymatic Detection of Cholesterol

Min Duan, Yunlin Peng, Liangliang Zhang, Xiangyu Wang, Jia Ge, Jianhui Jiang*, Ruqin Yu*

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China

To whom correspondence should be addressed.

Tel: +86 731 88822577.

Fax: +86 731 88822577.

E-mail address: rqyu@hnu.edu.cn (Ruqin Yu)

jianhuijiang@hnu.edu.cn (Jianhui Jiang)

	DNA sequences $(5' \rightarrow 3')$
PO	CCCTAACTCCCC
P1GR	CCCTAACTCCCCG
P2GR	CCCTAACTCCCCGG
P3GR	CCCTAACTC CCCGGG
P4GR	CCCTAACTCCCCGGGG
P1GL	G CCCTAACTCCCC
P2GL	GGCCCTAACTCCCC

 Table S1 The sequences of DNA oligonucleotides used in this work.

Supplementary Figures

Fig.S1 Contour maps fluorescence of DNA-Ag NCs with different guanine bases modification.

Fig.S2 TEM image of G-DNA-Ag NCs.

Fig.S3 The effect of pH on the sensor performance: in the absence of H_2O_2 (a), in the presence of 100 μ M H_2O_2 (b).

Fig.S4 Fluorescence spectra of G-DNA-Ag NCs after the treatment of different concentrations of H_2O_2 .

Fig.S5 The effect of cholesterol on the fluorescence intensity of G-DNA-Ag NCs without cholesterol oxidase: (a) in the absence of cholesterol; (b) in the presence of 200 μ M cholesterol.

Fig.S6 The fluorescence response in the absence (a) or presence (b) of 100 μ M cholesterol in diluted human serum (1%).