Supplemental material for Analytical Methods

Characterization of currently marketed

heparin products: Composition analysis by **2D-NMR.**

David A. Keire^{*^a}, Lucinda F. Buhse^a and Ali Al-Hakim^b

^aDivision of Pharmaceutical Analysis, 1114 Market St, St Louis, MO, USA. Fax: 314-539-2113; Tel: 314-539-3850; E-mail: david.keire@fda.hhs.gov ^bOffice of New Drug Quality Assessment, WO21 RM2524, 10903 New Hampshire, Silver Spring,

USA. Fax: 301-796-9747; Tel 301-796-1323; E-mail: ali.alhakim@ fda.hhs.gov

*Corresponding Author: Division of Pharmaceutical Analysis, 1114 Market St, St Louis, MO,

USA. Fax: 314-539-2113; Tel: 314-539-3850; E-mail: david.keire@fda.hhs.gov

Supplemental Table 1: Calculation of heparin sodium percent monosaccharide from 2D ¹H-¹³C HSQC NMR integrated areas. The chemical shift value shown in parentheses are the signals integrated to obtain peak areas. For illustrative purposes, the mean values obtained from the integration of the spectra from seven lots of heparin sodium are shown.

Signals	Integrated Crosspeaks (¹ H/ ¹³ C chemical shifts)	Mean				
		Volume (a.u.)				
A-Ring-C ₂	$A_{NS,6x}(3.27/60.7 \text{ ppm}) + A_{NS,3S,6x}(3.45/59.4 \text{ ppm}) + A_{NAc,6x}(3.92/56.5 \text{ prm})$	253 ± 20				
	ppm)					
A-Ring-C ₆	$A_{NS,6S}(4.27-4.41/69.2 \text{ ppm}) + A_{NS,6OH}(3.85/62.4 \text{ ppm})$					
	A _{NS} -(G)(5.58/100.5 ppm)+A _{NS,3S} (5.52/99.0 ppm)+[A _{NS,6S} -					
A-Ring-C ₁	$(I_{2S})+A_{NAc}-(G)](5.41/99.6 \text{ ppm})+A_{NS,6x}-(I)(5.34/98.4 \text{ ppm})+A_{NS}-$	285 ± 26				
	aRed(5.44/94.0 ppm)					
Mean A	Mean of C_2 , C_6 and C_1 Areas	272 ± 21				
	I_{2S} -($A_{NS,6x}$)(5.22/102.1 ppm)+I-($A_{NS,6S}$)(5.01/105.0 ppm)+I-					
U-Ring-C ₁	(A _{NS})(4.95/104.7 ppm)+G-(A _{NS})(4.61/104.8 ppm)+G-	285 ± 18				
	(A _{NAc})(4.52/105.3 ppm)+G-(A _{NS,3S})(4.61/103.9 ppm)					
<u>%Monosacch.</u>	Calculation used					
$A_{NS,6x}$ (C ₆)	A _{NS,6S} (4.27-4.41/69.2 ppm)÷A-Ring-C ₆					
$A_{NS,6OH}(C_6)$	$A_{NS,6OH}(3.85/62.4 \text{ ppm}) \div A-Ring-C_6$					
A _{NS,3S} (C ₂)	$A_{\text{NS},3S}(3.45/59.4 \text{ ppm}) \div \text{A-Ring-C}_2$					
$A_{NAc}(C_2)$	$A_{NAc}(3.92/56.5 \text{ ppm}) \div A-Ring-C_2$					
$A_{NS}-\alpha Red-C_1$	$A_{NS}-\alpha Red(5.44/94.1 \text{ ppm}) \div A ring-C_1$					
I _{2S}	I _{2S} -(A _{NS,6x})(5.22/102.1 ppm)÷U-Ring-C ₁					
I _{2OH}	I-(A _{NS,6S})(5.01/105.0 ppm)+I-(A _{NS})(4.95/104.7 ppm)÷U-Ri	ng-C ₁				
G _{2OH}	$G-(A_{NS})(4.61/104.8 \text{ ppm})+G-(A_{NAc})(4.52/105.3 \text{ ppm})+G-(A_{NS,3S})(4.61/103.9)$					
	ppm) \div U-Ring-C ₁					
Linker (C ₁)	Xylose H ₁ /C ₁ (4.46/105.8 ppm) \div {[U-Ring-C ₁ +Mean A] \div	-2}				

<u>Supplemental Table 2:</u> Calculation of heparin sodium percent disaccharide composition from only anomeric (H_1/C_1) 2D ¹H-¹³C HSQC-NMR integrated areas. The chemical shift value shown in parentheses are the signals integrated to obtain peak areas.

Signals	Integrated Crosspeaks (¹ H/ ¹³ C chemical shifts)	Mean		
		Volume (a.u.)		
A-Ring-C ₁	$\begin{array}{l} A_{NS}\text{-}(G)(5.58/100.5 \text{ ppm}) + A_{NS,3S}(5.52/99.0 \text{ ppm}) + [A_{NS,6S}\text{-}\\ (I_{2S}) + A_{NAc}\text{-}(G)](5.41/99.6 \text{ ppm}) + A_{NS,6x}\text{-}(I)(5.34/98.4 \text{ ppm}) + \\ A_{NS}\text{-}\alpha\text{Red}(5.44/94.0 \text{ ppm})5.34/98.4 \text{ ppm}) + A_{NS}\text{-}\\ \alpha\text{Red}(5.44/94.1 \text{ ppm}) \end{array}$	285 ± 26		
U-Ring-C ₁	$\begin{split} I_{2S}\text{-}(A_{NS,6x})(5.22/102.1 \text{ ppm}) + I\text{-}(A_{NS,6S})(5.01/105.0 \text{ ppm}) + I\text{-}\\ (A_{NS})(4.95/104.7 \text{ ppm}) + G\text{-}(A_{NS})(4.61/104.8 \text{ ppm}) + G\text{-}\\ (A_{NAc})(4.52/105.3 \text{ ppm}) + G\text{-}(A_{NS,3S,6x})(4.61/103.9 \text{ ppm}) \end{split}$	285 ± 18		
<u>%Disaccharide</u>	Calculation used			
$A_{NS,6x}-(I_{2S})+A_{NAc}-(G)$	[A _{NS,6x} -(I _{2S})+A _{NAc} -(G)](5.41/99.6 ppm)÷A-Ring-	C_1		
$A_{NS,6x}$ -(I_{2OH})	$A_{NS,6x}$ -(I_{2OH})(5.34/98.4 ppm)÷A-Ring- C_1			
$A_{NS,6x}$ -(G)	$A_{NS,6x}$ -(G) $A_{NS,6x}$ -(G)(5.58/100.5 ppm)÷A-Ring-C ₁			
$A_{NS,3S}$ -(X)	$A_{NS,3S}(5.52/99.0 \text{ ppm}) \div A-Ring-C_1$			
$I_{2S}-(A_{NS,6x})$ $I_{2S}-(A_{NS,6x})(5.22/102.1 \text{ ppm}) \div U-\text{Ring-C}_1$				
I_{2OH} -(A_{NS})	I_{2OH} -($A_{NS,6S}$)(5.01/105.0 ppm)÷U-Ring-C ₁			
G_{2OH} -(A_{NS})	G _{2OH} -(A _{NS})(4.61/104.8 ppm)÷U-Ring-C ₁			
$G_{2OH}-(A_{NS,3S})$ $G_{2OH}-(A_{NS,3S})(4.61/103.9 \text{ ppm}) \div U-Ring-C_1$				
G_{2OH} -(A_{NAc})	G _{20H} -(A _{NAc})(4.52/105.3 ppm)÷U-Ring-C ₁			

Supplemental Table 3: Calculation of percent monosaccharide in dalteparin from 2D ¹H-¹³C HSQC NMR integrated cross-peak volumes. The chemical shift values in parentheses are the signals integrated. For illustrative purposes, the mean values obtained from the integration of the spectra from three lots of dalteparin are shown.

<u>Signals</u>	Integrated Crosspeaks (¹ H/ ¹³ C chemical shifts)					
		<u>Volume</u>				
	(2.29/60.7 prov) + b = (2.46/50.4 prov) + b = (2.04/56.6)	<u>(a.u.)</u>				
A ring-C ₂	$A_{NS,6x}(3.28/60.7 \text{ ppm}) + A_{NS,3S,6x}(3.46/59.4 \text{ ppm}) + A_{NAc,6x}(3.94/56.6 \text{ ppm}) + A_{MAc,6x}(3.99/85.8 \text{ ppm}) + Epo-I(3.74/54.2 \text{ ppm})$	41 ± 2				
A ring-C ₆	$\frac{1}{2} = \frac{1}{2} = \frac{1}$					
	$\frac{A_{N3,05}(127, 100, 3, ppm) + A_{N3,05}(107, 0210, ppm)}{A_{N3,05}(107, 0210, ppm) + [A_{N3,05}(107, 0210, ppm)]}$	0011				
A ring- C_1	$(I_{2s}) + A_{NA,-}(G)[(5.39/99.4 \text{ ppm}) + A_{NS,3S}(5.46/99.6 \text{ ppm}) + [I_{NS,6S}(5.46/99.6 \text{ ppm}) + A_{NS,6S}(5.46/99.6 \text{ ppm}) + A_{NS,6S}(5.46$	58 + 2				
	$ppm)+AM.ol_{ex}(3.69-3.74/63.6 ppm)$	50 <u>-</u> 2				
Avg. A ring	Average of C_6 , C_2 and C_1 Areas	50 ± 2				
	I_{2S} -(A _{NS.6x})(5.24/102.0 ppm)+ I_{2OH} -(A _{NS.6S})(5.01/104.8 ppm)+ I_{2OH} -					
U/I/G-Ring	$(A_{NS})(4.91/104.5 \text{ ppm})+G_{2OH}-(A_{NS,3S})(4.61/103.8 \text{ ppm})+G_{2OH}-$	58 ± 2				
Area- C_1	$(A_{NS})(4.60/104.6 \text{ ppm})+G_{2OH}-(A_{NAc})(4.54/105.0 \text{ ppm})$					
<u>%Monosacc.</u>	Calculation Used					
A _{NS,6S} -C ₆	A _{NS,6S} (4.27-4.39/68.8 ppm)÷A ring-C ₆					
A _{NS,60H} -C ₆	$A_{NS,6OH}(3.87/62.5 \text{ ppm}) \div A \text{ ring-}C_6$					
$A_{NS,3S,6x}$ - C_2	A _{NS,3S,6x} (3.46/59.4 ppm)÷A ring-C ₂					
A _{NAc} -C ₂	$A_{NAc}(3.94/56.6 \text{ ppm}) \div \text{Avg. A-C}_2$					
$AM.ol_{6X}-C_2$	AM.ol _{6X} (3.99/85.8 ppm) \div A ring-C ₂					
AM.ol _{60H} -C _X	${[[AM.ol_{6OH}-C_4(4.24/88.3 \text{ ppm}) \div (AM.ol_{6OH}(4.24/88.3 \text{ ppm})-C_4+A_6]}$	AM.ol _{6S} -				
	$C_4(4.18/87.4 \text{ ppm}))]+ [AM.ol_{6OH}-C_5(4.08/84.4 \text{ ppm}) \div (AM.ol_{6OH}-C_5)]$	+AM.ol _{6S} -				
	C ₅ (4.27/82.2 ppm))]}÷ 2 •[AM.ol _{6X} (3.99/85.8 ppm)÷A ring-	C_2]				
$I_{2S}-C_1$	$I_{2S}(5.24/102.0 \text{ ppm}) \div U \text{ Ring } C_1$					
I _{2OH} -C ₁	$[I_{2OH}-(A_{NS,6S})(5.01/104.8 \text{ ppm})+I_{2OH}-(A_{NS})(4.91/104.5 \text{ ppm})]$	Ring C ₁				
G _{2OH} -C ₁	$[G_{2OH}-(A_{NS})(4.60/104.6 \text{ ppm})+G_{2OH}-(A_{NS,3S})(4.61/103.8 \text{ ppm})+$	G _{2OH} -				
	(A _{NAc})(4.54/105.0 ppm)]÷U Ring C ₁					
Epo-I-C ₂	Epo-I(3.74/54.2 ppm) \div A ring-C ₂					
Linker-Xyl-	Xyl(4.46/105.7 ppm)÷U-Ring C ₁					
C_1						

<u>Supplemental Table 4:</u> Calculation of dalteparin percent disaccharide composition based on 2D 1 H- 13 C HSQC-NMR H₁/C₁ cross-peak integrated volumes. The chemical shift value shown in parentheses are the signals integrated to obtain volumes.

Signals	Integrated Crosspeaks (¹ H/ ¹³ C chemical shifts)	Mean		
		<u>Volume</u>		
		<u>(a.u.)</u>		
	A_{NS} -(G)(5.58/100.3 ppm)+ $A_{NS,3S,6x}$ (5.48/99.0 ppm)+[$A_{NS,6S}$ -	50 . 0		
A ring- C_1	$(I_{2S})+A_{NAc}-(G)](5.39/99.4 \text{ ppm})+A_{NS,6x}-(I)(5.34/98.2 \text{ ppm})+$ AM ol α (3.69-3.74/63.6 ppm)	+ 58 ± 2		
	$I_{10}(A_{10}, C_{10}) = 0.0000000000000000000000000000000000$			
	$I_{2S}^{(A_{NS,6x})}(5.247102.0 \text{ ppm}) + I_{20H}^{(A_{NS,6S})}(5.017104.0 \text{ ppm}) + I_{20H}^{(A_{NS,6S})}$			
U/I/G-Ring Area-C ₁	$ppm)+G_{20H}(A_{NS})(4.507)($	58 ± 2		
	ppm) + 020H (11NS)(1100, 10 H0 ppm) + 020H (11NAC)(110 H, 10010			
Disaccharide	Calculation used			
$A_{NS,6x}$ - (I_{2S}) + A_{NAc} - (G)	[A _{NS,6x} -(I _{2S})+A _{NAc} -(G)](5.39/99.4 ppm)÷A-Ring-C ₁			
$A_{NS,6x}$ - (I_{2OH})	A _{NS,6x} -(I _{2OH})(5.34/98.2 ppm)÷A-Ring-C ₁			
$A_{NS,6x}$ -(G)	A _{NS,6x} -(G)(5.58/100.3 ppm)÷A-Ring-C ₁			
$A_{NS,3S,6x}$ -(x)	$A_{NS,3S,6x}$ -(x) $A_{NS,3S,6x}$ (5.48/99.0 ppm)÷A-Ring-C ₁			
I_{2S} -($A_{NS,6S}$)	I_{2S} -(A _{NS,6x})(5.24/102.0 ppm)÷U-Ring-C ₁			
$I_{2OH}-(A_{NS,6S})$ $I_{2OH}-(A_{NS,6S})(5.01/104.8 \text{ ppm}) \div U-\text{Ring-C}_1$				
I_{2OH} -($A_{NS,6OH}$)	I _{20H} -(A _{NS,60H})(4.91/104.5 ppm)÷U-Ring-C ₁			
G _{2OH} -(A _{NS})	G_{20H} -(A_{NS})(4.60/104.6 ppm)÷U-Ring-C ₁			
G_{2OH} -($A_{NS,3S}$)	$G_{2OH}-(A_{NS,3S})$ $G_{2OH}-(A_{NS,3S})(4.61/103.9 \text{ ppm}) \div U-\text{Ring-C}_1$			
G _{2OH} -(A _{NAc})	G_{2OH} -(A _{NAc})(4.52/105.3 ppm)÷U-Ring-C ₁			

Supplemental Table 5: Calculation of percent monosaccharide in tinzaparin from 2D ¹H-¹³C HSQC NMR cross-peak integrated volumes. The chemical shift values in parentheses are the signals integrated. For illustrative purposes, the mean values obtained from the integration of the spectra from three lots of tinzaparin are shown.

<u>Signals</u>	Integrated Crosspeaks (¹ H/ ¹³ C chemical shifts)	Mean					
		<u>Volume</u>					
A ring-C ₂	$A_{NS,6x}(3.28/60.7 \text{ ppm}) + A_{NS,3S,6x}(3.45/59.5 \text{ ppm}) + A_{NAc,6x}(3.93/56.6 \text{ pm})$	38 + 1					
	ppm)	50 ± 1					
A ring-C ₆	A _{NS,6S} (4.26-4.38/69.1 ppm)+A _{NS} (3.86/62.5 ppm)						
	A_{NS} -(G)(5.58/100.4 ppm)+ $A_{NS,3S,6x}$ (5.49/100.4 ppm)+[$A_{NS,6S}$ -						
A ring- C_1	$(I_{2S})+A_{NAc}-(G)](5.39/99.6 \text{ ppm})+A_{NS,6x}-(I)(5.34/98.2 \text{ ppm})+A_{NS}-$	55 + 2					
	$\alpha \text{Red}(5.44/93.9 \text{ ppm}) + A_{\text{NAc}} - \alpha \text{Red}(5.20/93.5 \text{ ppm}) + A_{\text{NS}}$	55 ± 2					
	βRed(4.71/98.5 ppm)						
Avg. A ring	Average of C_2 , C_6 and C_1 Areas	51 ± 1					
	$\Delta U_{2S}(5.50/100.1 \text{ ppm}) + I_{2S} - (A_{NS,6x})(5.23/102.0 \text{ ppm}) + I_{2OH}$						
U/I/G-Ring	$(A_{NS,6S})(5.02/104.8 \text{ ppm})+I_{2OH}-(A_{NS})(4.95/104.6 \text{ ppm})+G_{2OH}-$	58 + 1					
Area-C ₁	$(A_{NS,3S})(4.62/103.9 \text{ ppm})+G_{2OH}-(A_{NS})(4.60/104.7 \text{ ppm})+G_{2OH}-$	$J0 \pm 1$					
(A _{NAc})(4.51/105.1 ppm)							
<u>%Monosacc.</u>	Calculation Used						
A _{NS,6S} -C ₆	A _{NS,6S} (4.26-4.38/69.1 ppm)÷A ring-C ₆						
A _{NS,60H} -C ₆	$A_{NS,6OH}(3.85/62.4 \text{ ppm}) \div A \text{ ring-}C_6$						
A _{NS,3S} -C ₂	$A_{NS,3S,6X}(3.45/59.4 \text{ ppm}) \div A \text{ ring-}C_2$						
A _{NAc} -C ₂	$A_{NAc}(3.93/56.6 \text{ ppm}) \div \text{A ring-C}_2$						
$A_{NS}-\alpha Red-C_1$	$A_{NS}-\alpha Red(5.44/93.9 ppm) \div A ring-C_1$						
A_{NAc} - α Red- C_1	$A_{NAc}-\alpha Red(5.20/93.5 \text{ ppm}) \div A \text{ ring-}C_1$						
A_{NS} - β Red- C_1	A_{NS} - $\beta Red(4.71/98.5 ppm)$ + $A ring-C_1$						
I_{2S} - C_1	I _{2S} (5.23/102.0 ppm)÷U Ring C ₁						
I _{2OH} -C ₁	$[I_{2OH}-(A_{NS,6S})(5.02/104.8 \text{ ppm})+I_{2OH}-(A_{NS})(4.95/104.6 \text{ ppm})$]					
G _{2OH} -C ₁	G_{2OH} -($A_{NS,3S}$)(4.62/103.9 ppm)+ G_{2OH} -(A_{NS})(4.60/104.7 ppm)+ G_{2OH	20н-					
	(A _{NAc})(4.51/105.1 ppm)						
ΔU_{2S} -C1	$\Delta U_{2S} C_1(5.50/100.1 \text{ ppm}) \div U\text{-Ring } C_1$						
Linker-Xyl-C ₁	Xyl (4.48/105.4 ppm)÷U-Ring C ₁						

<u>Supplemental Table 6:</u> Calculation of tinzaparin disaccharide composition based on 2D 1 H- 13 C HSQC NMR H₁/C₁ cross-peak integrated volumes. The chemical shift value shown in parentheses are the signals integrated to obtain volumes.

Signals	Signals Integrated Crosspeaks (¹ H/ ¹³ C chemical shifts)			
		<u>Volume</u>		
		<u>(a.u.)</u>		
A_Ping_C.	A_{NS} -(G)(5.58/100.4 ppm)+ $A_{NS,3S,6x}$ (5.49/99.1 ppm)+[$A_{NS,6S}$ - (I_{22})+ A_{22} -(G)](5.39/99.6 ppm)+ A_{22} -(I)(5.34/98.2			
(n-3)	$(1_{2S}) + A_{NAc} - (0) [(5.57) > 5.6 ppm) + A_{NS,6x} - (1) (5.54) > 6.2$ $nnm) + A_{NS,6x} - \alpha Red(5.20/93.5)$	55 ± 2		
(11-3)	$ppm)+A_{NS}-\beta Red(4.71/98.5 ppm)$			
	$\Delta U_{2S}(5.50/100.1 \text{ ppm}) + I_{2S}-(A_{NS,6x})(5.23/102.0 \text{ ppm}) + I_{2OH}$			
U/I/G-Ring-C ₁	$(A_{NS,6S})(5.02/104.8 \text{ ppm})+I_{2OH}-(A_{NS})(4.95/104.6$	58 + 1		
(n=3)	ppm)+ G_{2OH} -($A_{NS,3S}$)(4.62/103.9 ppm)+ G_{2OH} -	50 ± 1		
	$(A_{NS})(4.60/104.7 \text{ ppm})+G_{2OH}-(A_{NAc})(4.51/105.1 \text{ ppm})$			
<u>%Disaccharide</u>	Calculation used			
$A_{NS,6x}-(I_{2S})+A_{NAc}-(G)$	[A _{NS,6x} -(I _{2S})+A _{NAc} -(G)](5.39/99.6 ppm)÷A-Ring-C	1		
$A_{NS,6x}$ - (I_{2OH})	$A_{NS,6x}$ -(I_{2OH}) $A_{NS,6x}$ -(I_{2OH})(5.34/98.2 ppm)÷A-Ring-C ₁			
$A_{NS,6x}$ -(G)	A _{NS,6x} -(G)(5.58/100.4 ppm)÷A-Ring-C ₁			
$A_{NS,3S,6x}-(x)$	$A_{NS,3S,6x}(5.49/99.1 \text{ ppm})$ ÷A-Ring-C ₁			
I_{2S} -($A_{NS,6S}$)	I _{2S} -(A _{NS,6x})(5.23/102.0 ppm)÷U-Ring-C ₁			
I_{2OH} -($A_{NS,6S}$)	I _{2OH} -(A _{NS,6S})(5.02/104.8 ppm)÷U-Ring-C ₁			
I_{2OH} -($A_{NS,6OH}$)	I _{2OH} -(A _{NS,6OH})(4.95/104.6 ppm)÷U-Ring-C ₁			
G _{2OH} -(A _{NS})	G _{2OH} -(A _{NS})(4.60/104.7 ppm)÷U-Ring-C ₁			
G _{20H} -(A _{NS,3S})	G _{2OH} -(A _{NS,3S})(4.62/103.9 ppm)÷U-Ring-C ₁			
G _{2OH} -(A _{NAc})	$G_{2OH}-(A_{NAc})$ $G_{2OH}-(A_{NAc})(4.51/105.1 \text{ ppm}) \div U-\text{Ring-C}_1$			
ΔU_{2S} -(A)	$\Delta U_{2S}(5.50/100.1 \text{ ppm}) \div U\text{-Ring-C}_1$			

Supplemental Table 7: Calculation of percent monosaccharide composition of enoxaparin from 2D 1 H- 13 C HSQC NMR cross peak integrated volumes. The chemical shift values in parentheses are the signals integrated. For illustrative purposes, the mean values obtained from the integration of the spectra from four lots of enoxaparin are shown.

Signals		Integrated Crosspeaks (¹ H/ ¹³ C chemical shifts)	Mean			
	A _N	$A_{NS,3S,6x}(3.28/60.7 \text{ ppm}) + A_{NS,3S,6x}(3.46/59.4 \text{ ppm}) + A_{NAc,6x}(3.92/56.5 \text{ ppm}) + 1,6-$				
A ring-C ₂		an.A($3.21/58.3$ ppm)+1,6-an.M($3.46/55.0$ ppm)+M _{NS} - α Red($3.61/60.2$				
		ppm)+Epo-I(3.73/54.2 ppm)				
A ring- C_6		$A_{NS,6S}(4.28-4.38/69.1 \text{ ppm}) + A_{NS}(3.85/62.5 \text{ ppm}) + 1,6-an.A(3.78/67.4)$				
		$\frac{\text{ppm}(3.80/68.0 \text{ ppm})}{(C)(5.56/100.4 \text{ ppm}) + 4} = \frac{(5.48/00.0 \text{ ppm})}{(5.48/00.0 \text{ ppm}) + (4.5.48/00.0 \text{ ppm})}$				
		A_{NS} -(G)(5.56/100.4 ppm)+ $A_{NS,3S,6x}$ (5.48/99.0 ppm)+ $[A_{NS,6S}$ -(I_{2S})+ A_{NAc} -				
A ring- C_1		$(O)_{J}(5.57/99.0 \text{ ppin}) + A_{NS,6x} - (1)(5.54/98.2 \text{ ppin}) + 1,0-an A(5.01/104.1 \text{ ppm}) + 1,6-an M(5.56/103.7 \text{ ppm}) + M_{NS}-aRed(5.39/95.6 \text{ ppm}) + A_{NS}-38/1000 \text{ ppin}) + M_{NS}-38/1000 \text{ ppin}) + M_{NS}-38/10000 \text{ ppin}) + M_{NS}-38/10000 \text{ ppin}) + M_{NS}-38/10000 \text{ ppin}) + M_{NS}-38/10000 \text{ ppin}) + M_{NS}-38/1000000000000000000000000000000000000$				
	αR	$ed(5.44/93.9 \text{ ppm}) + A_{NAc} - \alpha Red(5.20/93.4 \text{ ppm}) + A_{NS} - \beta Red(4.71/98.5 \text{ ppm})$				
Avg. A			50 . 1			
ring		Average of C_2 , C_6 and C_1 Areas	52 ± 4			
		$\Delta U_{2S}(5.50/100.1 \text{ ppm}) + \Delta U_{2OH}(5.16/103.7 \text{ ppm}) + I_{2S} - (A_{NS,6x})(5.22/102.0 \text{ mm})$				
U/I/G-]	ppm)+ I_{2OH} -($A_{NS,6S}$)(5.00/104.8 ppm)+ I_{2OH} -(A_{NS})(4.94/104.5 ppm)+ G_{2S} -				
ring	(A_{NS})	$G_{S}(4.73/102.9 \text{ ppm})+G_{2OH}-(A_{NS,3S})(4.61/103.8 \text{ ppm})+G_{2OH}-(A_{NS})(4.60/104.6 \text{ ppm})+G_{2OH}-(A_{NS})($	61 ± 5			
Area- C_1	p	ppm)+ G_{2OH} -(A_{NAc})(4.51/105.0 ppm)+ I_{2S} - β Red (4.99/94.6 ppm)+ I_{2S} - α Red				
0/ 14		(5.42/95.4 ppm)				
<u>%Monos</u>	sac.	<u>Calculation Used</u>				
A _{NS,6S} -C	-6	$A_{NS,6S}(4.28-4.38/69.1 \text{ ppm}) \div A \text{ ring-}C_6$				
A _{NS,60H} -	C ₆	$A_{NS,6OH}(3.85/62.4 \text{ ppm}) \div A \text{ ring-}C_6$				
A _{NS,3S} -(2	$A_{NS,3S,6X}(3.46/59.4 \text{ ppm}) \div A \text{ ring-}C_2$				
A _{NAc} -C	2	$A_{NAc,6x}(3.92/56.5 \text{ ppm}) \div A \text{ ring-}C_2$				
A_{NS} - αRed	$-C_1$	$A_{NS}-\alpha Red(5.44/93.9 \text{ ppm}) \div A \text{ ring-}C_1$				
A_{NAc} - αRec	$d-C_1$	$A_{NAc}-\alpha Red(5.20/93.4 \text{ ppm}) \div A \text{ ring-}C_1$				
A_{NS} - βRed	$I-C_1$	A_{NS} - β Red(4.71/98.5 ppm) \div A ring-C ₁				
M_{NS} - αRec	$l-C_1$	$M_{NS}-\alpha Red(5.39/95.6 \text{ ppm}) \div A \text{ ring-}C_1$				
1,6-an.A-	$-C_1$	1,6-an.A(5.61/104.1 ppm)÷A ring-C₁				
1,6-an.M	$-C_1$	1,6-an.M(5.56/103.7 ppm)÷A ring-C₁				
$I_{2S}-C_1$		I _{2S} (5.22/102.0 ppm)÷U Ring C ₁				
I _{2OH} -C	1	[I _{2OH} -(A _{NS,6S})(5.00/104.8 ppm)+I _{2OH} -(A _{NS})(4.94/104.5 ppm)]÷U-Ring	C ₁			
$G_{2S}-C_1$	l	G_{2S} -(A_{NS})(4.73/102.9 ppm)÷U-Ring C_1				
G _{2OH} -C	1	G_{2OH} -($A_{NS,3S}$)(4.61/103.8 ppm)+ G_{2OH} -(A_{NS})(4.60/104.6 ppm)+ G_{2OH}	-			
		$(A_{NAc})(4.51/105.0 \text{ ppm}) \div U\text{-Ring } C_1$				
ΔU_{2S} -C	1 $\Delta U_{2S} C_1(5.50/100.1 \text{ ppm})$ ÷U-Ring C ₁					
ΔU_{2OH} -0	C_1	$\Delta U_{2OH}(5.16/103.7 \text{ ppm}) \div U-\text{Ring } C_1$				
I _{2S} -βRed-	ed-C ₁ I_{28} - β Red (4.99/94.6 ppm) \div U-Ring C ₁					
I _{2S} -αRed-	$I_{2S} \sim Red (5.42/95.4 \text{ ppm}) \div U - Ring C_1$					
Epo-I-C	C_2	Epo-I($3.73/54.2$ ppm)÷A ring-C ₂				
GalA-C	-5	GalA(4.66/74.4 ppm)÷Avg. A-ring				
Linker-Xy	Linker-Xyl-C1Xyl (4.44/105.6 ppm) \div U-Ring C1					

<u>Supplemental Table 8:</u> Calculation of enoxaparin percent disaccharide composition in the USP enoxaparin standard based on 2D 1 H- 13 C HSQC NMR H₁/C₁ cross-peak integrated volumes. The chemical shift value shown in parentheses are the signals integrated to obtain volumes.

Signals		Integrated Crosspeaks (¹ H/ ¹³ C chemical shifts)	Int. Area				
A-Ring-C ₁ (n=4)	A_{NS} -(G)(5.56/100.4 ppm)+ $A_{NS,3S,6x}$ (5.48/99.0 ppm)+[$A_{NS,6S}$ -						
	$(I_{2S})+A_{NAc}-(G)](5.37/99.6 \text{ ppm})+A_{NS,6x}-(I)(5.34/98.2 \text{ ppm})+1,6-$						
	a	an.A(5.61/104.1 ppm)+1,6-an.M(5.56/103./ ppm)+ M_{NS} -					
	0	$\alpha \text{Red}(5.39/95.6 \text{ ppm}) + A_{\text{NS}} - \alpha \text{Red}(5.44/93.9 \text{ ppm}) + A_{\text{NAc}}$					
		$\alpha \text{Ked}(5.20/93.4 \text{ ppm}) + A_{\text{NS}} - \text{pKed}(4.71/98.5 \text{ ppm})$					
	()	$\Delta O_{2S}(5.50/100.1 \text{ ppin}) + \Delta O_{2OH}(5.10/105.7 \text{ ppin}) + 1_{2S}$					
U/I/G-Ring-	(Λ_N)	$(5.52)(4.94/104.5 \text{ ppm}) + G_{20}(4.88,68)(5.00/104.8 \text{ ppm}) + G$					
C_1	(A _N	$(A_{NS})(4.94/104.3 \text{ ppin}) + G_{2S} - (A_{NS})(4.73/102.9 \text{ ppin}) + G_{2OH}$					
(n=4)	(A_N)	I_{Ac} (4.51/105.0 ppm)+ I_{2S} - β Red (4.99/94.6 ppm)+ I_{2S} - α Red					
	(5.42/9	$\frac{1}{2}$ (4.59/104.7 ppm)+ $\frac{1}{2}$ s μισα (4.59/104.7 ppm)+ $\frac{1}{2}$ s a Red (5.42/95.4 ppm)					
%Disaccharide		Calculation used					
$A_{NS,6x}$ - (I_{2S}) + A_{NAc} - (G)		$[A_{NS,6x}-(I_{2S})+A_{NAc}-(G)](5.37/99.6 \text{ ppm}) \div A-Ring-C_1$					
$A_{NS,6x}$ -(I_2	_{ОН})	A _{NS,6x} -(I _{2OH})(5.34/98.2 ppm)÷A-Ring-C ₁					
A _{NS,6x} -(0	G)	A _{NS,6x} -(G)(5.56/100.4 ppm)÷A-Ring-C ₁					
$A_{NS,3S,6x}-(x)$		A _{NS,3S,6x} (5.48/99.0 ppm)÷A-Ring-C ₁					
I_{2S} -($A_{NS,6S}$)		I_{2S} -($A_{NS,6x}$)(5.22/102.0 ppm)÷U-Ring- C_1					
I_{2OH} -($A_{NS,6S}$)		I_{2OH} -(A _{NS,6S})(5.00/104.8 ppm)÷U-Ring-C ₁					
I _{2OH} -(A _{NS,6OH})		I _{2OH} -(A _{NS,6OH})(4.94/104.5 ppm)÷U-Ring-C ₁					
G _{2S} -(A _{NS})		G_{2S} -(A _{NS})(4.73/102.9 ppm)÷U-Ring C ₁					
G _{2OH} -(A _{NS})		G_{2OH} -(A _{NS})(4.60/104.6 ppm)÷U-Ring-C ₁					
G _{2OH} -(A _{NS,3S})		G _{20H} -(A _{NS,3S})(4.61/103.8 ppm)÷U-Ring-C ₁					
ΔU_{2S} -(A	A)	$\Delta U_{2S}(5.50/100.1 \text{ ppm}) \div U\text{-Ring-C}_1$					
ΔU_{2OH} -(2	A)	$\Delta U_{2OH}(5.16/103.7 \text{ ppm}) \div U\text{-Ring-C}_1$					

Supplemental Table 9: Comparison of integrated 2D-HSQC volumes acquired with different parameters on the same sample. The values are the integrated volume of each signal divided by the comparison spectrum. In the case of the signal to noise comparison all volumes were normalized to the volume obtained with the 2.7 h experiment. For the relaxation delay comparison all values were divided by the values obtained in the 10.9 h experiment.

Signal Integrated	Signal-to-Noise Comparison					
Relaxation Delay						
Comparison (nt=32)						
Parameter Altered \rightarrow	d1=12.6/1.5	nt=32/8	nt=16/8	nt=8/8		
Experiment Time Ratio \rightarrow	68.3/10.9 h	10.9/2.7 h	5.4/2.7 h	2.7/2.7 h		
A _{NAc,6x} -C2	1.32	4.41	2.13	1.00		
A _{NS,3S,6x} -C2	1.57	3.90	1.79	1.00		
A _{NS,6x} -C2	1.30	3.79	1.97	1.00		
A _{NS,6OH} -C6	1.13	3.74	1.93	1.00		
A _{NS,6S} -C6	1.50	3.95	2.04	1.00		
A _{NS} -αRed-C1	1.55	4.70	1.90	1.00		
A _{NS,6x} -I _{2OH} -C1	1.56	4.14	2.02	1.00		
$A_{NS,6S}$ - I_{2S} + A_{NAc} - G - $C1$	1.62	3.92	2.03	1.00		
A _{NS} -G-C1	1.38	4.70	2.27	1.00		
A _{NS,3S,6S} -C1	1.49	4.13	2.01	1.00		
I_{2S} - $A_{NS,6x}$ - $C1$	1.36	3.98	2.04	1.00		
I _{20H} -A _{NS,6S} -C1	1.36	3.62	1.88	1.00		
I _{2OH} -A _{NS} -C1	1.56	3.28	1.74	1.00		
G _{20H} -A _{NS,3S,6S} -C1	1.53	3.67	1.93	1.00		
G _{2OH} -A _{NAc} -C1	1.55	4.29	2.17	1.00		
G _{20H} -A _{NS} -C1	1.53	3.88	2.01	1.00		
A _{NAc} -Methyl	1.64	3.59	1.75	1.00		
Xyl-Linker-C1	1.71	3.61	1.88	1.00		
Mean (n=18)	1.48	3.96	1.97			
Standard Deviation	0.14	0.38	0.14			
%RSD	9.7%	9.7%	7.1%			