Electronic Supplementary Information

A simple and fast Fe₃O₄ magnetic nanoparticles-based dispersion solid phase extraction of Sudan dyes from food and water samples coupled with high-performance liquid chromatography

Jie Zhang, Jianbo Shao, Ping Guo, Yuming Huang*

State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China E-mail: ymhuang@swu.edu.cn

•	<u> </u>	10	0							
co-existing ions	at concentration	recovery (%) ^a								
		sudan I	sudan II	sudan III	sudan IV					
Na^+	100 mg L^{-1}	86.62±2.21	90.72±2.21	94.83±3.43	95.88±3.15					
Ca^{2+}	50 mg L^{-1}	84.25±1.87	91.65±2.32	99.77±2.18	96.75±4.02					
Mg^{2+}	50 mg L^{-1}	84.32±2.84	90.57±2.00	97.39±1.29	94.88±2.66					
NH_4^+	2 mg L^{-1}	83.23±1.99	91.28±2.22	94.88±1.11	92.49±1.95					
SO ₄ ²⁻	$100 \text{ mg } \text{L}^{-1}$	83.67±5.69	91.27±2.29	91.01±1.49	91.66±2.38					
NO ₃	50 mg L^{-1}	85.16±4.46	90.65±3.31	100.05±0.74	93.73±1.64					
PO ₄ ³⁻	30 mg L^{-1}	80.77±1.01	82.03±1.65	97.16±2.15	94.15±2.04					
CO ₃ ²⁻	30 mg L^{-1}	85.00±1.99	93.39±1.42	95.19±3.28	101.42±2.07					
Al ³⁺	$100~\mu g~L^{-1}$	90.31±1.02	96.98±1.39	101.59±1.16	101.07±2.31					
Pb^{2+}	$100~\mu g~L^{-1}$	86.34±1.96	93.77±1.82	102.96±1.63	98.16±1.84					
Mn ²⁺	$20~\mu g~L^{-1}$	90.10±1.69	96.10±1.89	101.22±1.55	98.81±2.69					
Zn^{2+}	$100~\mu g~L^{-1}$	83.56±1.87	87.63±2.76	93.01±5.27	93.20±1.43					
Cu ²⁺	$50~\mu g~L^{-1}$	81.36±4.00	91.35±1.94	99.93±1.21	96.92±1.72					
Fe ³⁺	$50 \ \mu g \ L^{-1}$	83.08±0.88	93.31±1.01	99.17±2.91	95.92±1.94					

Table S1. Recoveries of Sudan dyes in the presence of foreign species (Sudan I-IV concentration: $5 \ \mu g \ L^{-1}$, $5 \ \mu g \ L^{-1}$, $20 \ \mu g \ L^{-1}$, $40 \ \mu g \ L^{-1}$).

^a Mean value±standard deviation (n=3).

Table S2. Reproducibility of the Fe_3O_4 MNPs as SPE adsorbent for extraction of Sudan dyes from water samples.

targets	concentration level ($\mu g L^{-1}$)	RSD (%) (for single	e batch) ^a	RSD (%) $(among hatches)^a$				
		batch 1	batch 2	batch 3	KSD (70) (anong baches)				
sudan I	5	3.1	0.7	2.0	2.5				
sudan II	5	2.2	1.8	3.9	3.2				
sudan III	20	2.1	2.4	1.9	3.4				
sudan IV	40	3.6	2.7	2.4	4.6				
^a Averages of three determinations.									

Table S3. Analytical performance of the proposed method for Sudan dyes.

	water media					chili oil			chili powder				tomato paste			
targets	linear range	r^2	RSD% ^a	LOD	linear range	r^2	RSD% ^b	LOD	linear range	r^2	RSD% ^b	LOD	linear range	r^2	RSD% ^b	LOD
	$(\mu g \ L^{-1})$			$(\mu g \ L^{-1})$	$(\mu g \ g^{-1})$			$(\mu g g^{-1})$	$(\mu g \ g^{-1})$			$(\mu g g^{-1})$	$(\mu g g^{-1})$			$(\mu g g^{-1})$
Sudan I	0.05-25	0.9982	2.47	0.02	0.05–10	0.9978	3.11	0.01	0.05–10	0.9958	3.58	0.01	0.05-10	0.9961	2.53	0.01
Sudan II	0.05–25	0.9983	3.15	0.02	0.05–10	0.9987	2.52	0.01	0.05-10	0.9975	2.74	0.01	0.05-10	0.9970	1.89	0.01
Sudan III	0.10-100	0.9989	3.36	0.02	0.05–40	0.9973	2.64	0.01	0.05–40	0.9989	2.06	0.01	0.05-40	0.9999	2.36	0.01
Sudan IV	0.20-200	0.9974	4.97	0.04	0.10-80	0.9981	1.97	0.02	0.10-80	0.9992	2.31	0.02	0.10-80	1	3.02	0.02
^a Six replicate determinations of 5 μ g L ⁻¹ Sudan I, 5 μ g L ⁻¹ Sudan II, 20 μ g L ⁻¹ Sudan III and 40 μ g L ⁻¹ Sudan IV standard. ^b Six replicate determinations of 1 μ g g ⁻¹ Sudan I, 1 μ g g ⁻¹ Sudan II, 4 μ g g ⁻¹ Sudan III and 8 μ g g ⁻¹ Sudan IV spiked foodstuff samples.																

Figure S1. TEM image of the Fe₃O₄ MNPs.

Figure S2. XRD pattern of the Fe₃O₄ MNPs.

Electronic Supplementary Material (ESI) for Analytical Methods This journal is C The Royal Society of Chemistry 2013

Figure S3. VSM magnetization curve of the Fe₃O₄ MNPs.

Figure S4. The zeta potentials of the as-prepared Fe₃O₄ MNPs.

Figure S5. The effect of different solvent on the desorption of Sudan dyes from the

Fe₃O₄ MNPs. Error bars represent one standard deviation for three measurements.

Figure S6. Effect of contact time on extraction efficiency of Sudan dyes. Sudan I-IV concentration: 5 μ g L⁻¹, 5 μ g L⁻¹, 20 μ g L⁻¹, 40 μ g L⁻¹; sample solution volume: 100 mL; Fe₃O₄ MNPs: 0.2 g; KCl concentration: 10 %; sample solution pH: 7.0; ultrasonic desorption time: 1 min. Error bars represent one standard deviation for three measurements.

Figure S7. Effect of amounts of the adsorbents on extraction efficiency of Sudan dyes. Sudan I-IV concentration: 5 μ g L⁻¹, 5 μ g L⁻¹, 20 μ g L⁻¹, 40 μ g L⁻¹; sample solution volume: 100 mL; KCl concentration: 10 %; sample solution pH: 7.0; adsorption time: 30 min; ultrasonic desorption time: 1 min. Error bars represent one standard deviation for three measurements.