Max. and min. transmission

Data / restraints / parameters

Final R indices [I>2sigma(I)]

Refinement method

Goodness-of-fit on F²

Supporting Information

Pyridyl- and Benzimidazole-Based Ruthenium (III) Complex for Selective Chloride Recognition through Fluorescence Spectroscopy

Hemant Sharma,^{a,} Hernández, J. Guadalupe,^b Jayanthi Narayanan,^c Herbert Hofeld,^d Thangarasu Pandiyan,^{b,*} Narinder Singh^{a,*}

Identification code 70herbm C39 H42 C1 F6 N3 O4 P2 Ru Empirical formula Formula weight 929.22 Temperature 100(2) K Wavelength 0.71073 Å Triclinic Crystal system P-1 Space group Unit cell dimensions a = 10.2059(15) Å $\alpha = 88.423(2)^{\circ}$. b = 12.2904(18) Å $\beta = 79.612(2)^{\circ}$. c = 16.590(2) Å $\gamma = 67.580(2)^{\circ}$. Volume 1890.2(5) Å³ Ζ 2 Density (calculated) 1.633 Mg/m³ 0.647 mm⁻¹ Absorption coefficient 948 F(000) 0.49 x 0.44 x 0.42 mm³ Crystal size Theta range for data collection 1.25 to 25.00°. Index ranges -12<=h<=12, -14<=k<=14, -19<=l<=19 Reflections collected 13314 6568 [R(int) = 0.0229]Independent reflections Completeness to theta = 25.00° 98.8 % Absorption correction None

0.7729 and 0.7424

6568 / 17 / 514

1.037

Full-matrix least-squares on F²

R1 = 0.0502, wR2 = 0.1298

Table S1: Crystal data and structure refinement for ([Ru(1)(Cl)(PPh₃)][PF₆]·2CH₃OH) (4)

R indices (all data)	R1 = 0.0523, wR2 = 0.1330
Largest diff. peak and hole	1.271 and -0.877 e.Å ⁻³

Table S2: Selected bond lengths [Å] and angles [°] for the cationic Ru(II) and (III) complexes $([Ru(1)(Cl)(PPh_3)]^+, ([Ru(2)(Cl)(PPh_3)]^+ and ([Ru(3)(Cl)(H_2O)]^+))$

X-ray structural d	data of ([Ru(1)(Cl)(PPh ₃)] ⁺	

Bond distances (Å)

N(2)-Ru(1)-P(1)

Ru(1)-N(1)	2.070(4)	Ru(1)-N(3)	2.103(4)
Ru(1)-O(1)	2.109(3)	Ru(1)-N(2)	2.245(4)
Ru(1)-P(1)	2.318(12)	Ru(1)-Cl(1)	2.428(12)
Bond Angles (°)			
N(1)-Ru(1)-N(3)	97.28(15)	N(1)-Ru(1)-O(1)	80.04(13)
N(3)-Ru(1)-N(2)	101.78(14)	N(1)-Ru(1)-P(1)	95.31(11)
O(1)-Ru(1)-P(1)	87.75(9)	N(1)-Ru(1)-Cl(1)	172.79(11)
O(1)-Ru(1)-Cl(1)	93.67(9)	P(1)-Ru(1)-Cl(1)	87.91(4)
N(3)-Ru(1)-O(1)	176.88(13)	N(1)-Ru(1)-N(2)	84.05(14)
O(1)-Ru(1)-N(2)	76.44(14)	N(3)-Ru(1)-P(1)	94.11(10)

N(3)-Ru(1)-Cl(1)

88.90(11)

Geometry-optimized structural data of ([Ru(2)(Cl)(PPh₃)]⁺

164.06(11)

Bond distances (Å)

Ru(1)-N(1)	2.184	Ru(1)-N(12)	2.221
Ru(1)-Cl(1)	2.504	Ru(1)-P(1)	2.434
Ru(1)-N(12)'	1.196	Ru(1)-N(1)'	2.217
Bond Angles (°)			

N(1)-Ru(1)-N(12)	87.77	N(1)-Ru(1)-N(1)'	101.01
N(12)-Ru(1)-N(12)	80.36	N(1)'-Ru(1)-N(12)'	89.74
N(1)-Ru(1)-P(1)	91.39	N(12)-Ru(1)-P(1)	82.89
N(12)-Ru(1)-P(1)	82.89	(N(12)´-Ru(1)-P(1)	92.96
N(1) ⁻ -Ru(1)-P(1)	99.90	N(12)-Ru(1)-Cl(1)	88.56
N(1)-Ru(1)-N(12)'	167.54	N(1)'-Ru(1)-N(12)	164.23
Cl(1)-Ru(1)-P1(1)	178.54		

Geometry-optimized structural data of $([Ru(3)(Cl)(H_2O)]^+$

Bond distances (Å)

Ru(1)-N(1)	2.132	Ru(1)-N(11)	2.211
Ru(1)-N(14)	2.128	Ru(1)-N(24)	2.074
Ru(1)-Cl(1)	2.306	Ru(1)-O(1)	2.204
Bond Angles (°)			

N(1)-Ru(1)-N(11)	80.31	N(1)-Ru(1)-N(24)	90.84
N(1)-Ru(1)-C(14)	160.44	N(11)-Ru(1)-N(14)	80.62
N(11)-Ru(1)-N(24)	80.73	N(14)-Ru(1)-N(24)	90.35
N(1)-Ru(1)-Cl(1)	99.08	N(11)-Ru(1)-Cl(1)	178.40
N(14)-Ru(1)-Cl(1)	99.87	N(24)-Ru(1)-Cl(1)	100.73
N(1)-Ru(1)-O(1)	87.30	N(11)-Ru(1)-O(1)	89.52
N(14)-Ru(1)-O(1)	88.23	N(24)-Ru(1)-O(1)	170.24
Cl(1)-Ru(1)-O(1)	88.98		

Figure S1: Change in the absorbance and fluorescence intensity of **4** (A & B; 80 μ M) upon addition of a particular anion salt (300 μ M) in CH₃CN/H₂O (9:1; v/v).

Figure S2: Change in the absorbance and fluorescence intensity of **5** (A & B; 80 μ M) upon addition of a particular anion salt (300 μ M) in CH₃CN/H₂O (9:1; v/v).

Figure S3: Change in the UV-Visible absorbance profile **6** (80 μ M) upon addition of a particular anion salt (300 μ M) in CH₃CN/H₂O (9:1; v/v).

Figure S4: (A) Job's plot showing that the stoichiometry between receptor **6** and chloride is 1:1. The concentration of [HG] was calculated using the equation $[HG]=\Delta I/I_0 \times [H]$; (B) Benesi-Hildebrand plot for the determination of the stability constant of the complex formed between receptor **6** (80 µM) and chloride.