Electronic Supplementary Information

for

Alkali Metal Ions Transfer across Water/1, 2-DCE Interface

Facilitated by a Series of Crown Ethers

Computational details

Density functional calculations were carried out with Becke's three-parameters hybrid exchange functional and Lee-Yang-Parr correlation functional approach B3LYP.[1-4] The basis sets for C, O, H, Li and Na atoms of investigated molecules were 6-311+G(d, p), which included the polarization function in all the atoms and diffuse function in C, O, Li and Na atoms.[5,6] The polarizable continuum model (PCM) was used in our system and DiChloroEthane with dielectric constant ($\varepsilon = 10.125$) was chosen as the solvent.[1] All the above quantum chemical calculations, including geometry optimizations, were carried out by using Gaussian 09 package.[7]

Figure 1 Optimized geometries of a, b and c as well as interacting with Li^+ and Na^+ with the PCM model calculated at the B3LYP/6-311+G(d, p) level.

Tuble T beleeted Bond Distances (i) of optimized Geometries of a, 5 and e as wen as interacting									
with Li+ and Na+ with the PCM model calculated at the B3LYP/6-311+G(d, p) level.									
Species	R ₃₄₋₃₅	R ₃₅₋₃₆	R ₃₆₋₃₇	R ₃₇₋₃₈	R ₃₈₋₃₄	R ₃₄₋₃₆	R ₃₄₋₃₇	R ₃₅₋₃₇	R ₃₅₋₃₈
as	2.601	2.838	2.902	2.899	2.836	4.490	4.435	4.432	4.485
bs	2.549	2.960	2.892	2.892	2.960	4.384	4.944	4.943	4.384
cs	2.590	2.825	2.899	2.899	2.825	4.477	4.415	4.414	4.476
asLi+	2.556	2.656	2.650	2.644	2.656	4.218	4.285	4.287	4.223
asNa+	2.578	2.754	2.773	2.774	2.749	4.380	4.290	4.293	4.387
bsLi+	2.677	2.682	2.645	2.654	2.864	4.302	4.704	3.862	3.613
csLi+	2.545	2.642	2.660	2.659	2.642	4.211	4.280	4.277	4.201
csNa+	2.629	2.750	2.790	2.790	2.750	4.357	4.470	4.469	4.356

Table 1 Selected Bond Distances (Å) of Optimized Geometries of a, b and c as well as interacting

Table 2 Bond distances (Å) of Optimized Geometries	of 15-5 (a,	b and c)
and Its Metal Cation (Li	⁺ and Na ⁺) Complexes		

Species	R ₃₄₋₄₂	R ₃₅₋₄₂	R ₃₆₋₄₂	R ₃₇₋₄₂	R ₃₈₋₄₂
asLi+	2.370	2.380	2.174	2.105	2.163
asNa+	2.379	2.382	2.374	2.356	2.390
bsLi+	2.782	2.083	2.045	2.061	2.022
csLi+	2.298	2.296	2.194	2.184	2.184
csNa+	2.352	2.352	2.352	2.341	2.351

Table3Mulliken Charges (C) of Selected Atoms in the Optimized Geometries of 15-5 (a, b and c) and Its Metal Cation (Li⁺ and Na⁺) Complexes

Species	C1	C2	C4	C5	C7	C9	O34	O35	O36	O37	O38
as	-0.0517	0.169	0.352	-0.848	0.216	-0.0234	-0.136	-0.127	-0.183	-0.201	-0.183
bs	-1.205	0.683	-0.0677	-0.0676	0.683	-1.205	-0.106	-0.106	-0.178	-0.184	-0.178
cs	-0.155	0.273	-0.230	-0.230	0.273	-0.155	-0.125	-0.125	-0.184	-0.184	-0.201
asLi+	-0.0797	0.146	0.374	-0.853	0.338	-0.0769	-0.130	-0.118	-0.178	-0.169	-0.177
asNa+	-0.0644	-0.0302	0.251	-1.165	0.655	0.103	-0.194	-0.183	-0.248	-0.249	-0.245
bsLi+	-0.326	0.478	-0.378	-0.265	0.421	-0.420	-0.0736	-0.0864	-0.148	-0.203	-0.146
csLi+	-0.209	0.306	-0.182	-0.178	0.304	-0.176	-0.105	-0.118	-0.176	-0.169	-0.154
csNa+	-0.197	0.309	-0.165	-0.156	0.311	-0.0884	-0.153	-0.194	-0.261	-0.239	-0.188

References

[1] Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chemical Reviews-Columbus 2005, 105, 2999-3093.

[2] Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 1993, 98, 5648-5652.

[3] Becke, A. D. Density - functional thermochemistry. IV. A new dynamical correlation functional

and implications for exact - exchange mixing. The Journal of Chemical Physics 1996, 104, 1040-1046.

[4] Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Physical Review B* **1988**, *37*, 785-789.

[5] Gao, P.; Weaver, M. J. Surface-enhanced Raman spectroscopy as a probe of adsorbate-surface bonding: benzene and monosubstituted benzenes adsorbed at gold electrodes. *The Journal of Physical Chemistry* **1985**, *89*, 5040-5046.

[6] Muniz-Miranda, M.; Pergolese, B.; Bigotto, A. Surface-Enhanced Raman Scattering and Density Functional Theory Study of 4-Nitrobenzonitrile Adsorbed on Ag and Ag/Pd Nanoparticles. *The Journal of Physical Chemistry C* **2008**, *112*, 6988-6992.

[6] Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09 Revision A. 02, ; Gaussian Inc.;*Wallingford CT* **2009**.