## **Applications of Voltammetric Ion Selective Electrodes to Complex Matrices**

## **Supporting Information**

Alexander R. Harris<sup>a1\*</sup>, Jie Zhang<sup>a</sup>, Robert W. Cattrall<sup>b</sup> and Alan M. Bond<sup>a</sup>\*

Keywords: Ion selective electrodes, polymer membrane ISEs, cyclic voltammetry, blood analysis

\*E-mail address: alex.harris@latrobe.edu.au; alan.bond@monash.edu

<sup>&</sup>lt;sup>a</sup> School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia

<sup>&</sup>lt;sup>b</sup> Department of Chemistry, La Trobe University, Bundoora, Victoria, 3086, Australia

emim.tfsa 
$$\bigoplus_{N=1}^{N} \frac{1}{N} = CF_3 = CF_3$$

P14.tfsa  $\bigoplus_{N=1}^{N} \frac{1}{N} = CF_3 = CF_3$ 

aph4.cph12  $C_6H_{13} = C_6H_{13} = C_14H_{29}$ 
 $C_6H_{13} = C_14H_{29}$ 

Figure S1. Structures of ionic liquids.

Table S1: Statistical data from the AEROSET 2 at the John Radcliffe Hospital.

| Ion              | Lower calibrant      | Coefficient  | Upper calibrant      | Coefficient  |
|------------------|----------------------|--------------|----------------------|--------------|
|                  | average activity /mM | of Variation | average activity /mM | of Variation |
| Na <sup>+</sup>  | 122                  | 0.9          | 156                  | 0.5          |
| $K^{+}$          | 2.7                  | 1.7          | 6.2                  | 0.9          |
| Ca <sup>2+</sup> | 1.86 *               | 1.5          | 2.77 *               | 1.1          |

<sup>\*</sup>total concentration

- E<sub>m</sub> using EPG vs SCE
- E<sub>m</sub> using screen printed electrode vs Ag/AgCl

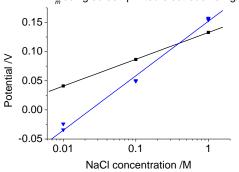



Figure S2.  $E_m$  versus NaCl concentration calibration curve of the TCNQ microcrystal sensor and response using the  $10^{th}$  potential cycle on EPG with an SCE reference electrode (black) and on a planar macrodisc screen printed electrode with a Ag/AgCl reference electrode with no salt bridge (blue).

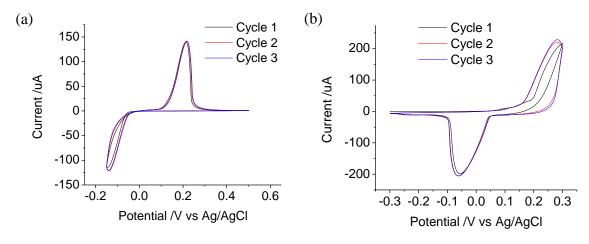



Figure S3: First three potential cycles in 0.1 M NaCl, 50 mM TRIS and HEPES at a scan rate of 100 mV s<sup>-1</sup> of mechanically adhered (a) TCNQ and (b) TTF on screen printed planar electrodes.

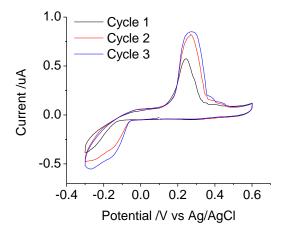



Figure S4: Screen printed planar electrodes with 5 % w/w TCNQ added to the carbon ink working electrode coated with Nafion in 0.1 M NaCl, 50 mM TRIS and HEPES at a scan rate of  $100 \text{ mV s}^{-1}$ .

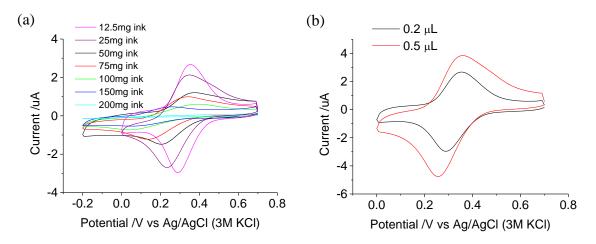



Figure S5. Cyclic voltammetry of a dielectric ink supported thin film VISE with 20 mM Na ionophore VI in 100 mM NaCl at a scan rate of 100 mV s<sup>-1</sup> (a) varying amount of dielectric ink (b) varying volume of thin film.

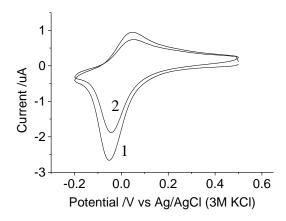



Figure S6. Cyclic voltammetry of a dielectric ink supported thin film in 100 mM NaCl at a scan rate of 100 mV s<sup>-1</sup> without ionophore. The numbers 1 and 2 refer to the first and second cycle of the potential respectively.

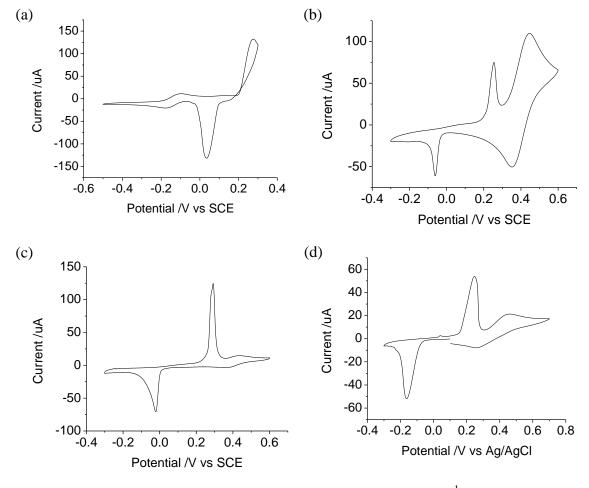



Figure S7: Voltammetry in 0.1 M NaCl at a scan rate of 100 mV s<sup>-1</sup> on an EPG electrode of mechanically adhered (a) TTF (0.5 mM 1,4-benzoquinone, 3<sup>rd</sup> potential cycle) and (b) TCNQ (0.1 M TRIS pH9 and 5 mM 1,1'-ferrocenedicarboxylic acid, 3<sup>rd</sup> potential cycle). Mechanically adhered TCNQ coated with Nafion with (c) 1 mM 1,1'-ferrocenedicarboxylic acid, 1 M NaCl, 50mM TRIS and HEPES, 12<sup>th</sup> potential cycle on an EPG electrode at a scan rate of 200 mV s<sup>-1</sup> and (d) mechanically adhered 1,1'-ferrocenedicarboxylic acid in 0.1 M NaCl, 50mM TRIS and HEPES, 1<sup>st</sup> potential cycle on a screen printed electrode at a scan rate of 100 mV s<sup>-1</sup>.

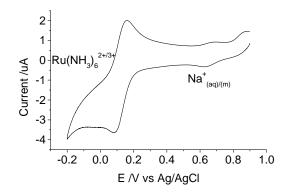



Figure S8. Calibration of a thin film VISE with 10 mM Na ionophore VI in 1 M NaCl at a scan rate of 100 mV s<sup>-1</sup> versus Ru(NH<sub>3</sub>)<sub>6</sub>Cl<sub>3</sub>.

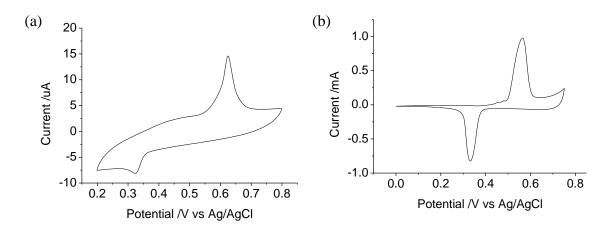



Figure S9: (a) Cyclic voltammetry at an EPG electrode of mechanically adhered TCNQ coated with Nafion at a scan rate of  $100 \text{ mV s}^{-1}$ ,  $10^{th}$  potential cycle in seawater. (b)  $6^{th}$  potential cycle of mechanically adhered TTF on an EPG electrode in seawater at a scan rate of  $100 \text{ mV s}^{-1}$ .

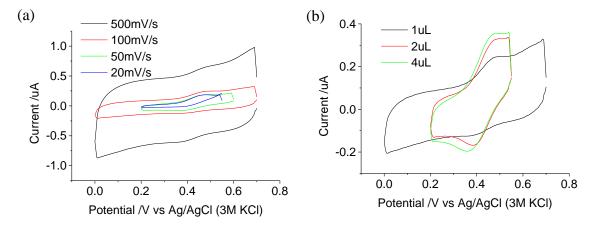



Figure S10. Cyclic voltammetry of a thin film VISE with 20mM Ca ionophore II in plasma varying (a) scan rate of 100 mV s<sup>-1</sup> with a 1  $\mu$ L thin film (b) thin film thickness at a scan rate of 100 mV s<sup>-1</sup>.

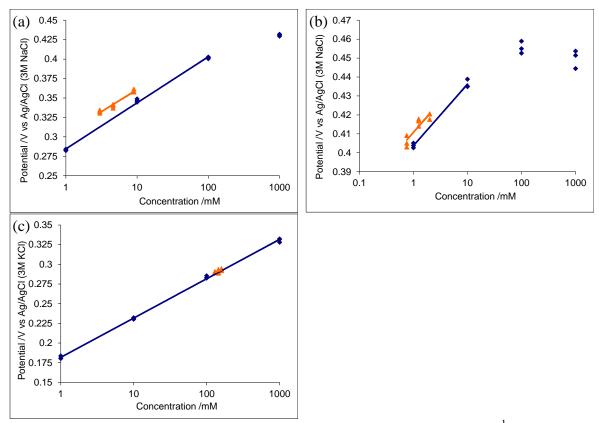



Figure S11. Sensitivity of a 0.2 μL thin film VISE at a scan rate of 100 mV s<sup>-1</sup> varying NaCl concentration in pure electrolyte (blue) or high ionic strength calibrant solutions (orange) with (a) 20 mM K ionophore III, (b) 20 mM Ca ionophore II or (c) 20 mM Na ionophore VI.