
Through-bond energy transfer cassette based on spirobifluorene-tetrrhodamine for the colorimetric and ratiometric investigation towards trace Hg²⁺

Bo Yang and Wenhui Wu*

(School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China)

Scheme S1	The Synthesis route of compound 3	S 3
Fig.S1	FT-IR spectrum of compound 1.	S 4
Fig. S2	¹ H NMR spectrum of compound 1.	S5
Fig. S3	FT-IR spectrum of compound 2.	S 6
Fig. S4	¹ H NMR spectrum of compound 2.	S 7
Fig. S5	FT-IR spectrum of compound 3.	S 8
Fig. S6	¹ H NMR spectrum of compound 3.	S9
Fig. S7	Absorption of rhodamine moiety in 2 and emission spectrum of 1.	S 10
Fig. S8	Fluorescence emission spectra of 2 and 3.	S 11
Fig. S9	Fluorescence emission spectra of 2 and 3 (40 μ M).	S12
Fig. S10	Fluorescence pectra of 2 (10 μ M) in the presence of different metal ions.	S13

Scheme S1 The Synthesis route of compound 3

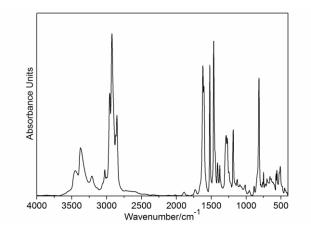


Fig.S1 FT-IR spectrum of compound 1.

Electronic Supplementary Material (ESI) for Analytical Methods This journal is C The Royal Society of Chemistry 2013

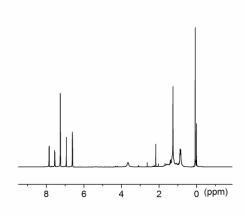


Fig. S2 ¹H NMR spectrum of compound 1.

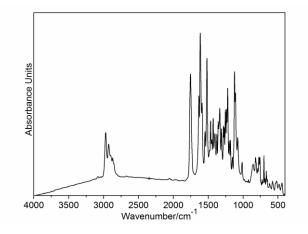


Fig. S3 FT-IR spectrum of compound 2.

Electronic Supplementary Material (ESI) for Analytical Methods This journal is C The Royal Society of Chemistry 2013

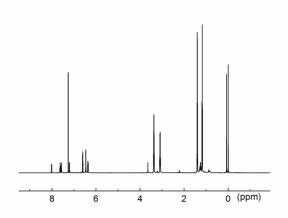


Fig. S4 ¹H NMR spectrum of compound 2.

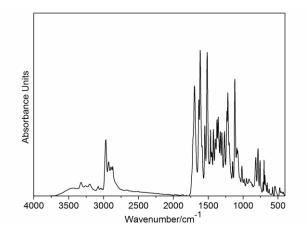


Fig. S5 FT-IR spectrum of compound 3.

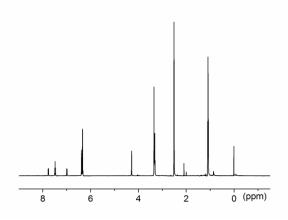


Fig. S6 ¹H NMR spectrum of compound 3.

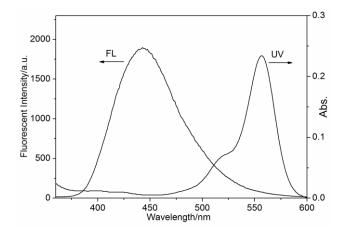


Fig. S7 Absorption of rhodamine moiety in compound 2 (right) and emission spectrum of compound 1 (left). Shaded area indicates the spectral overlap between the emission of compound 1 and the rhodamine moiety characteristic absorption.

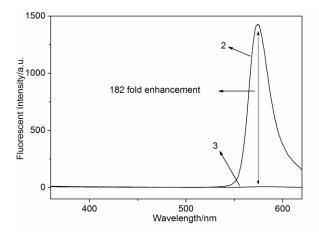


Fig. S8 Fluorescence emission spectra of compound 2 (10 μ M) in the presence of Hg²⁺ (100 μ M) and compound 3 (40 μ M) in the presence of Hg²⁺ (100 μ M) in methanol/H₂O (4:1, v/v). λ_{ex} =314 nm. Equation used (I-I₀/I₀), I₀=fluorescence intensity of compound 3 at 570 nm after the addition of Hg²⁺; I=fluorescence intensity at 570 nm of compound 2 after the addition of Hg²⁺.

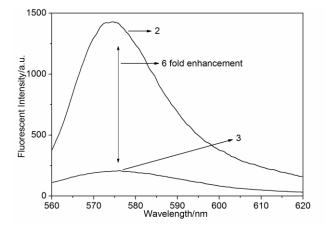


Fig. S9 Fluorescence emission spectra of compound 2 (10 μ M) in the presence of Hg²⁺ (100 μ M) with an excitation at 314 nm in methanol/H₂O (4:1, v/v) and compound 3 (40 μ M) in the presence of Hg²⁺ (100 μ M) with an excitation at 550 nm in methanol/H₂O (4:1, v/v). Equation used (I-I₀/I₀), I₀=fluorescence intensity of compound 3 at 570 nm after the addition of Hg²⁺; I=fluorescence intensity at 570 nm of compound 2 after the addition of Hg²⁺.

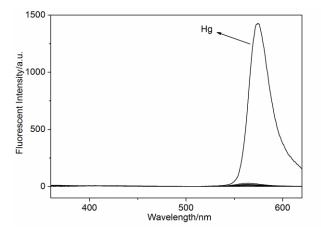


Fig. S10 Fluorescence emission spectra recorded of compound 2 (10 μ M) in the presence of different metal ions (100 μ M) in methanol/H₂O (4:1, v/v). λ_{ex} =314 nm.

Electronic Supplementary Material (ESI) for Analytical Methods This journal is C The Royal Society of Chemistry 2013