Supporting Information A highly water-soluble and specific BODIPY-based fluorescent probe for hypochlorite detection and cell imaging

Guangfei Wu, ^a Fang Zeng,* ^a and Shuizhu Wu *^{a, b}

^aCollege of Materials Science & Engineering, South China University of Technology, Guangzhou, 510640, China. E-mail: mcfzeng@scut.edu.cn

^bState Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China. E-mail: shzhwu@scut.edu.cn; Fax: +86 20-22236363; Tel: +86 20-22236363

Contents:

- 1. ¹H NMR spectra
- 2. Mass spectra (ESI)
- 3. Quantum yields
- 4. Detection limit
- 5. Photostability
- 6. Effect of pH Values
- 7. Comparison of the recently reported ClO⁻ fluorescent probes

1. ¹H NMR spectra.

Figure S1. ¹H NMR spectrum of BOD-COOH.

Figure S3. ¹H NMR spectrum of BOD-OXIME.

2. Mass spectra (ESI).

Figure S4. MS (ESI) spectrum of BOD-COOH.

Figure S5. MS (ESI) spectrum of BOD-CHO.

Figure S6. MS (ESI) spectrum of BOD-OXIME.

Figure S7. MS (ESI) spectrum for the product from the reaction of BOD-OXIME and NaOCl

3. Quantum Yields.

Quantum yields were determined using Rhodamine B in ethanol as a standard ($\Phi_{ST} = 0.49$ in ethanol¹). Non-degassed, spectroscopic grade ethanol and a 10 mm quartz cuvette were used. In order to minimize reabsorption effects, only dilute solutions with an absorbance below 0.1 at the excitation wavelength λ_{ex} were used in the measurements. All spectra were recorded at room temperature on non-degassed samples. The quantum yield was calculated according to the

equation: $\Phi_{\rm X} = \Phi_{\rm ST} \left(\frac{{\rm Grad}_{\rm X}}{{\rm Grad}_{\rm ST}} \right) \left(\frac{\eta^2_{\rm X}}{\eta^2_{\rm ST}} \right)$; Where the subscripts ST and X denote standard and test

respectively, $\boldsymbol{\Phi}$ is the fluorescence quantum yield, *Grad* the gradient from the plot of integrated fluorescence intensity *vs* absorbance, and $\boldsymbol{\eta}$ the refractive index of the solvent. Both **BOD-OXIME** and **BOD-CHO** were dissolved in 0.1M PBS buffer (pH=7.4).

Quantum yield of **BOD-OXIME**: $\Phi = 0.96$. Quantum yield of **BOD-CHO**: $\Phi = 0.04$

[1] Kelly G. Casey, Edward L. Quitevis, J. Phys. Chem., 1988, 92, 6590.

Figure S8. Integrated fluorescence intensity and absorbance of RhB, BOD-CHO, BOD-OXIME.

4. Detection limit.

The detection limit was calculated based on the fluorescence titration. The Probe **BOD-OXIME** concentration was 2 μ M and the slit was adjusted to 5 nm/5 nm. The emission intensity of the probe **BD-OXIME** without ClO⁻ was measured by 5 times and the standard deviation of blank measurements was determined. Under the present conditions, a good linear relationship between the fluorescence intensity and the ClO⁻ concentration could be obtained in the ClO⁻ concentration range of 0 - 6 μ M (R=0.997).

The detection limit of **BOD-OXIME** was determined from the following equation: **Detection** Limit = $\mathbf{K} \times \mathbf{SD/S}$, where K = 3; SD is the standard deviation of the blank solution; S is the slope of the calibration curve. Detection Limit = $\mathbf{K} \times \mathbf{SD/S} = 3 \times 0.3099/1.7464 \times 10^7 = 1.77 \times 10^{-8}$ M, namely, the detection limit is determined to be 17.7 nM at S/N = 3 (signal-to-noise ratio of 3).

Figure S9. Fluorescence intensity of **BD-OXIME** against the hypochlorite concentration from 0 to 6μ M in 0.1 M pH 7.4 PBS buffer. $\lambda_{ex}/\lambda_{em} = 500/525$ nm.

Electronic Supplementary Material (ESI) for Analytical Methods This journal is o The Royal Society of Chemistry 2013

5. Photostability

Fig. S10 Photostablility results for **BOD-OXIME** (10 μ M) after addition of 100 μ M NaClO (a) and 0.1 μ M rhodamine B (b) in 0.1 M pH 7.4 PBS buffer by fluorescence spectrophotometer (λ_{ex} =500 nm, λ_{em} =525 nm for **BOD-OXIME** after addition of 100 μ M NaClO; λ_{ex} =540 nm, λ_{em} =575 nm for rhodamine B).

As shown in this Fig. S10, for **BOD-OXIME**, small changes (<7%) of the fluorescence intensity was observed up to 2 h under continuous excitation on a fluorescence spectrophotometer, In contrast, emission of rhodamine B decreased by about 18% after 2 h of continuous excitation. These results indicate that, **BOD-OXIME** upon addition of ClO⁻ shows excellent photostability.

6. Effect of pH Values

Fig. S11 Fluorescence response of free probe BOD-OXIME (2 μ M) and after addition of ClO⁻ (50 μ M) under different pH values (in Britton–Robinson buffer). λ ex/ λ em = 500/525 nm.

Britton-Robinson buffers were prepared by mixing 0.04 mol L^{-1} of H₃PO₄–CH₃COOH–H₃BO₃ solution and 0.2 mol L^{-1} of NaOH solution to the required pH value^[2].

[2]H. T. S. Britton, R. A. Robinson, J. Chem. Soc., 1931, 458, 1456.

7. Comparison of the recently reported ClO⁻ fluorescent probes

 Table S1. Comparison of the recently reported ClO⁻ fluorescent probes.

Table SI. Comparison of the recently	reported CR	J Huorescen	t probes.
Probe	Detection	Response	Comments
	limit	time	
CN CN NH ₂ NH ₂ Chem. Commun., 2011, 47 , 12691	0.2 μM	10 min	PBS/DMF (v/v, 2:8) I ₅₀₅ /I ₅₈₅ =235-fold Ratiometric fluorescent probe Living cell imaging(only exogenous ClO ⁻)
	0.09 µM	1s	Pure water Fluorescent turn-off response
Analyst, 2012, 137 , 1872	No data available	5 min	H ₂ O/EtOH (v/v, 4:1) I ₅₇₅ / I ₇₅₀ Ratiometric fluorescent sensor Living cell imaging(only exogenous ClO ⁻)
Br, Co_2Et S, S S,	No data available	~4 min	Pure water Fluorescent turn-on response (I ₅₆₀)= 400-fold Living cell imaging(only exogenous ClO ⁻)
Anal. Chim. Acta., 2013, 775, 100	0.024 μM	1 min	0.1 M potassium phosphate buffer, pH 8.5, containing 40% DMF I ₅₇₈ /I ₅₀₁ = 3955-fold Ratiometric fluorescent probe

Probe	Detection limit	Response time	Comments
CN NH ₂ CN CN CN CN	1.07 μM	1 min	CH ₃ CN/H ₂ O (v/v, 4:6) I ₂₈₃ /I ₃₁₆ = 82-fold Ratiometric fluorescent probe
Dalton Trans., 2013, 42 , 10097.	10 nM	within seconds	PBS buffer Fluorescent turn-on response Imaing both exogenous and endogenous ClO ⁻ in living cells.
ho ho ho ho ho ho ho ho	0.33 μM	2 min	PBS buffer with less than 1% EtOH Fluorescent turn-on response (I ₅₂₈)=156 fold (Hg ²⁺ induces ~80 fold enhancement at 530 nm)
h_{N} h_{N} h_{H} h_{H	5.0 nM	More than 60min	water Fluorescent turn-on response (I ₅₄₈)= 82 fold
(ho + commun 2011 47 11978)	No data available	Very fast	HEPES buffer (pH 7.05) containing 10% (v/v) DMSO Fluorescent turn-on response Living cell imaging(only exogenous ClO ⁻)
	17.7 nM	Very fast (<1s)	PBS buffer Fluorescent turn-on response Imaing both exogenous and endogenous ClO ⁻ in living cells.

This work **BOD-OXIME**

Electronic Supplementary Material (ESI) for Analytical Methods This journal is C The Royal Society of Chemistry 2013