1 Supplemental Information

Table S1. Preparation of Dif	ferent EDS Devices						
Experiment	PDMS amount and Amount of c				ompound added (µL) ^a		
	format	C1	C2	C3	C4	C5	C6
Effect of PDMS size	2.0 g, 3 mm blocks 2.0 g, 10 mm blocks 2.0 g, solid block, 14.53 mm o.d.	- 1.0	2.0	2.8	5.5	19.5	21.1
Comparison of EDS system with conventional liquid		4 μ L of stock solution, prepared by mixing 0.4 mL methylene chloride (14.3%, v/v), 0.1 mL					
standard mixture	No PDMS	toluene (3.6%, v 1.0 mL mL <i>n</i> -ter	(3.6%, v/v), 0.2 methyl stradecane	v/v), mL <i>n</i> -u salicylat e (35.7%	0.1 m indecan	L brom le (7.1% %, v/v)	and 1
	2.0 g, 200 μm particles	4.0	20.2	28.0	55.0	195.0	211. 0
Relationship between	2.0 g, 200 μm	0.4	2.0	2.8	5.5	19.5	21.1
analytes added and amount	particles	0.8	4.0	5.6	11.0	40.0	42.2
extracted		0.1	0.5	0.7	1.4	5.0	5.0
Stability	2.0 g, 200 μm particles	0.4	2.0	2.8	5.5	19.5	21.1

2 ^aC1 to C6 represents: (C1) methylene chloride, (C2) toluene, (C3) bromoform, (C4) *n*-undecane,

3 (C5) methyl salicylate, (C6) *n*-tetradecane.

	1 able 52. Kepe	suuve sar	npling of	EUS VIAI	неааѕрас	se Contair		rent Form:	S OT PLIME	O			
	Form	Meth chlc	nylene oride	Tolu	ene	Brom	oform	n-Und	lecane	Met salicy	thyl ylate	<i>n</i> -Tetra	decane
•		%RSD	Slope ^a	%RSD	Slope ^a	%RSD	Slope ^a	%RSD	Slope ^a	%RSD	Slope ^a	%RSD	Slope ^a
	Solid	2.17	ns	0.58	ns	0.31^{b}	-8.09 ^b	0.92^{b}	-3.46 ^b	1.03^{b}	-2.36 ^b	3.16	su
	10 mm blocks	4.92	ns	0.34	ns	0.35	ns	0.66	ns	0.89	ns	3.73	ns
	3 mm blocks	0.43	su	0.14	ns	5.40°	SU	0.32^{b}	0.16^{b}	1.77	su	3.35	su
9	^a Slope	refers to	the chang	e in measu	ired amou	int of com	ipound per	r repeated	measuren	nent (5 mé	asuremen	ts total). L	Juits
7	are in 1	ng/run, ne	sgative sig	gn indicate	s a decres	tse, and "1	ns" means	not statist	tically sign	nificant at	$\alpha = 0.05.$		
8	^b In cas	es where	the data s	how variat	tion about	t a line thi	at is decrea	asing, the	total varia	ution woul	d include	contributio	ons from
6	both th	ie random	n noise (m	leasuremer	it error) a	nd the slo	pe of the 1	regression	line. In th	lese cases,	the appro	ximate %	RSD value is
0	the star	ndard erro	or adjuste	d for the re	gression	line divid	ed by the	average po	eak area o	ver the rai	nge of the	experimen	nt. This ratio
-	is used	here und	ler the hea	nding %RS	D only w	then the re	sgression s	slope is sta	atistically	significan	t. It is a m	easuremen	nt of the
2	repeats	ability, ad	justing fo	or the effec	ts of the t	emporal s	equence.	I		I			
ε	°This d	lata point	is suspect	ted to be it	naccurate,	causing a	an apparer	nt increase	; omitting	this data	point gave	e an %RSI) of 0.77%
4	and a s	slope of -().07 ng/ru	m.))		

emen	ement of the
t is a measu	t is a measur
ant. I	ant I
nific	nific
SIS S	<u>сі</u>
ally	allv
tatistic	tatistic
ope is s	one is s
gression slo quence.	pression slo
when the reg temporal se	when the res
SD only test of the	SD only
%R	%R
the e	ding (
e hea ng foi	e hea
nder th Idjusti	ider th
ity, a	re ur
s used he epeatabil	s used he

°This data point is suspected to be inaccurate, causing an apparent increase; omitting this data point gave an %RSD of 0.77% and a slope of -0.07 ng/run.

Table S3. Least-squa	ares Fit of Fig. 2 Data.		
	Equation	R ² Value	t-Ratio for quadratic term
Methylene chloride	$y = -0.035 x^2 + 1.54 x + 136$	0.937	- 3.98
Toluene	y = 1.84 x + 28.5	0.997	- 1.25
Bromoform	y = 21.8 x + 29.9	0.999	1.46
<i>n</i> -Undecane	$y = 0.131 x^2 + 4.51 x - 60.9$	0.919	12.24
Methyl salicylate	$y = 0.316 x^2 + 10 x - 129.2$	0.906	10.53
<i>n</i> -Tetradecane	$y = -0.088 x^2 + 1.92 x - 37.2$	0.854	7.45

Fig. S1. Calibration curves obtained using conventional syringe liquid injection of a standard

19 solution and analysis using (A) GC-MSD and (B) GC-FID.

23 temperature (22-23°C) to 45°C, (B) from 10°C to 45°C, and (C) from 45°C to 10°C.

25 Measurement of the headspace concentration of toluene in an EDS vial

Three identical sets of model EDS devices were prepared at different times, each containing duplicate devices. All PDMS particles used were fabricated in one batch to reduce variation. Each device was sampled with a gas-tight syringe and analyzed using GC-FID. The peak areas were then be quantified using two approaches: comparison to an injection of 1.0 ppm commercial standard toluene sample, and a liquid injection calibration curve.

31 Measurements were first conducted using a 500 µL gas-tight syringe. The tip of the 32 syringe was heated to 200 °C before each sampling to reduce sample carry-over. An Agilent 33 7820A GC-FID system was used for detection. Three duplicate sets of devices (6 devices total) 34 were prepared by adding 2 µL toluene into 2-dram vials with 2 g PDMS at different times. After 35 approximately 3 days equilibrium at room temperature, each device was sampled and analyzed 36 using a 500 µL gas-tight syringe multiple times during a 30-day test period. Two 1.0 ppm 37 standard toluene air bags were sampled and analyzed at the same time to provide a quantitative 38 reference. Using a 1.0 ppm toluene gas standard, the concentration in the headspace was found to 39 be 20.3 ppm (see Table S4).

We also constructed two liquid calibration curves by injecting 1.0 μ L standard solutions of toluene in methanol. The first included six data points (1.6 ng, 4.0 ng, 10 ng, 20 ng, 40 ng and 100 ng, each with at least duplicate measurements) and gave a calibration curve of y = 4369.2 x + 4793.5, with R² = 0.9935. Another calibration with nine data points (0.25 ng, 0.5 ng, 1.0 ng, 3.0 ng, 5.0 ng, 7.0 ng, 10 ng, 30 ng, and 50 ng) gave a calibration curve of y = 2997 + 4733.6 x, with R² = 0.9987. With an average peak area of 1.36 x10⁵, the liquid calibration curve 1 gave a result of 16.6 ppm, while curve 2 gave 15.5 ppm. The average is 16.0 ppm (see Table S4).

Vial designation (set / number)	Average peak area	RDS (%) ^a
1 / 1	$1.46 \ge 10^5$	16.2
1 / 2	$1.76 \ge 10^5$	22.9
2 / 1	$1.46 \ge 10^5$	16.4
2 / 2	$1.34 \ge 10^5$	17.9
3 / 1	$1.18 \ge 10^5$	23.9
3 / 2	$1.21 \ge 10^5$	23.7
1.0 ppm standard	6.72×10^3	15.7
Average of all vials	1.36×10^5 (20.3 ppm ^b)	22.6

Table S4. Headspace Concentration Determined Using a Standard Gas Sample and Gas-Tight

g iep

^bCalibrated concentration using the 1.0 ppm standard. 48

49

47

Table S5. Data Measured by Liquid Injection for Construction of Calibration Curves.							
Calibrat	Calibration curve 1 Calibration curve 2						
Amount injected (ng)	Peak area (%RSD) ^a	Amount injected (ng)	Peak area (%RSD) ^a				
1.6	$0.60 \times 10^4 (3.2)$	0.25	$0.268 \times 10^4 (17)$				
4	$0.10 \times 10^4 (8.0)$	0.5	$0.401 \times 10^4 (1.4)$				
10	$4.43 \times 10^4 (13)$	1.0	$0.606 \times 10^4 (15)$				
20	$1.02 \text{ x} 10^5 (8.7)$	3.0	$1.91 \times 10^4 (5.0)$				
40	$2.01 \text{ x} 10^5 (10)$	5.0	$2.44 \times 10^4 (3.5)$				
100	$4.32 \times 10^5 (23)$	7.0	$3.07 \times 10^4 (2.8)$				
		10	$5.46 \times 10^4 (5.6)$				
		30	$1.50 \text{ x} 10^5 (7.4)$				
		50	$2.36 \times 10^5 (3.8)$				
EDS average	$1.36 ext{ x10}^{5}$						
Calc. Conc. (ppm)	16.6 ^b		15.5 ^c				
Ave. (ppm)	16.0						
^a %RSD was calculated for 2-3 repeated measurements for each dilution							

^bConcentration based on calibration curve 1. ^cConcentration based on calibration curve 2.

58 Calculation of partition coefficient using headspace concentration

According to simple partition theory, as an analyte enters a closed system, it is distributed between the vapor phase and solid/polymer phase. The ratio of concentration of analyte in the sorbent/polymer to concentration of analyte in the vapor phase is defined as the partition coefficient, K (or distribution coefficient if more than just simple partition is involved):

$$63 K = \frac{c_2}{c_1} (1)$$

64 where C_2 is the concentration in the polymer phase, and C_1 is the concentration in the gas phase.

In our EDS system, as the total volume, PDMS amount and analyte amount are known,

and the headspace concentration can be measured, we can easily calculate the distribution

67 coefficient.

 $68 \qquad m = C_1 V_1 + C_2 V_2 \qquad (2)$

69
$$K = \frac{c_2}{c_1} = \frac{(m - c_1 V_1)/V_2}{c_1}$$
 (3)

where m is the total amount of analyte added, m = 2.0 μ L x 0.8669 mg/ μ L = 1.73 mg, V_2 is the volume of the polymer, the PDMS density is 0.965 g/mL, V_2 = 2.0 g /(0.869 g/ mL) = 2.07 mL, V_1 is the headspace volume, the vial volume is 8.5 mL, V_1 = 8.5 - V_2 = 8.5-2.07 = 6.43 mL, and the headspace concentration, C_1 , is 16.0 to 20.3 ppm.

At 25 °C and 1 atm, the toluene (concentration can be converted from ppm to mg/m³ using the
following equation:

76 X ppm = $(Y mg/m^3)(24.45)/(molecular weight)$ (4)

77 For $C_1 = 16.0 \, ppm$, converted into $16.0 \, x \frac{92.14 \, mg}{24.45 \, m^3} = 60.3 \, \frac{mg}{m^3}$ m.w. = 92.14 g/mol

78
$$K = \frac{(m - C_1 V_1)/V_2}{C_1} = (1.73mg - 60.3mg * m^{-3} * 6.43 mL * 10^{-6} \frac{m^3}{mL}) / (2.07mL * 10^{-6} \frac{m^3}{mL})$$

79 $(60.3 \frac{\text{mg}}{\text{m}^3}) = 1.38 \times 10^4$

80 For
$$C_1 = 20.3 \, ppm$$
, converted into $20.3x \frac{92.14}{24.45} \frac{\text{mg}}{\text{m}^3} = 76.5 \frac{\text{mg}}{\text{m}^3}$
81 $K = \frac{(m - C_1 V_1)/V_2}{C_1} = (1.73 mg - 76.5 mg * m^{-3} * 6.43 \, mL * 10^{-6} \frac{m^3}{mL})/(2.07 mL *$

84 *Construction of calibration curve*

For construction of a calibration curve, three duplicate sets, each set containing eight 2dram devices with 2.0 g PDMS, were prepared. In each set, the eight devices were divided evenly into 4 groups, and then 0.1 μ L, 0.5 μ L, 1.0 μ L, and 2.0 μ L of toluene were added into vials of each group, respectively. Each device was sampled and analyzed using the gas-tight syringe and GC-FID for more than 6 times after equilibrium. The results are summarized in Table S6 and used to construct the calibration curve (Fig. S3).

Table S6. EDS Hea	Table S6. EDS Headspace Concentrations for Different Amounts of Toluene.						
Device #	Toluene amount (µL)	Peak area ^a	ppm ^b	RSD			
1	0.5	$2.85 \text{ x}10^4$	4.25	40.0%			
2	0.5	$3.51 \text{ x} 10^4$	5.22	70.2%			
3	1.0	$6.10 \text{ x} 10^4$	9.08	16.3%			
4	1.0	$5.94 \text{ x} 10^4$	8.84	18.6%			
5	2.0	$1.41 \text{ x} 10^5$	20.99	18.5%			
6	2.0	$1.37 \text{ x} 10^5$	20.37	27.0%			
11	0.1	$0.479 \text{ x}10^4$	0.71	26.5%			
12	0.1	$0.482 \text{ x}10^4$	0.72	21.7%			

^aAverage of three sets. ^b Determined using a 1.0 ppm toluene standard gas sample.

Fig. S3 Calibration curve constructed using eight EDS devices and different amounts of toluene.
97