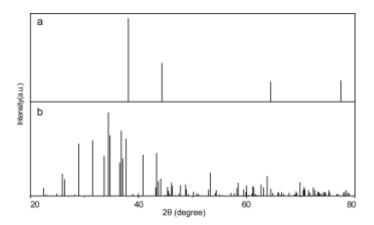
Supporting Information

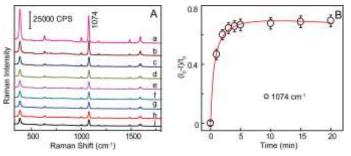
SERS sensing of sulfide based on the sulfidation of silver nanoparticles

Li-Xia Chen, Da-Wei Li*, Lu-Lu Qu, Yuan-Ting Li and Yi-Tao Long

Experimental Section


Reagents. All chemical reagents were analytical grade and used as received without further purification. Sodium citrate (\geq 99.0%) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Silver nitrate (99%), Sodium sulfide nonahydrate (98%), 4-aminothiophenol (4-ATP) (97%) and bovine serum samples were obtained from Sinopharm Chemical Reagent Co., Ltd (shanghai, China).

Apparatus. All solutions were prepared with 18.2 M Ω ·cm deionized water obtained with a Milli-Q System (Millipore, MA, USA). The high-resolution transmission electron microscopy (HRTEM) images of colloidal silver nanoparticles (AgNPs) were acquired on a JEM-2100 (JEOL Ltd., Japan) with an accelerating voltage 200 kV. The X-ray diffraction (XRD) patterns of AgNPs were obtained on a Bruker AXS D8-Advanced diffractometer (Bruker AXS Inc., Jermany) with Cu K α radiation (λ =1.5418 Å). Surface-enhanced Raman Scattering (SERS) spectra were collected with a portable Raman spectrometer (BWS415 B&W Tek Inc., U.S.A.) with an excitation wavelength of 785 nm, a resolution of 5 cm⁻¹.


Preparation of SERS-active AgNPs colloids. AgNPs colloids were prepared by the reduction of silver nitrate with sodium citrate according to pervious research.^[1] Briefly, 18 mg silver nitrate was dissolved in 100 mL deionized water and heated to be boiling before 2 mL of 1.00 wt.% trisodium citrate solution was added. The solution was held at boiling for an additional 25 min and then cooled to room

temperature. Thus, 60 mL AgNPs colloids were obtained with a concentration of 1.8×10^{-3} M.^[2] All the other AgNPs colloids used in experiments were obtained by diluting with deionized water.

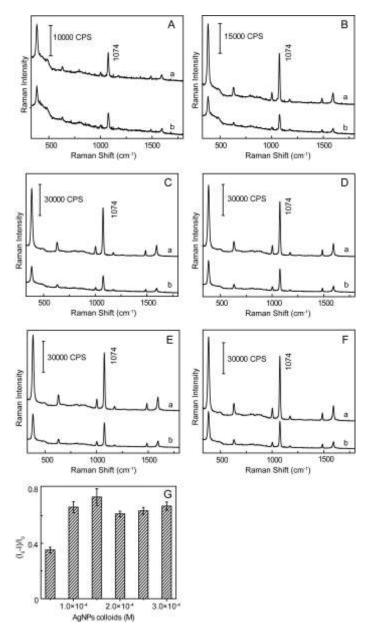

SERS measurement of sulfide. Firstly, a stock solution of SERS sensing system was prepared by self-assembling 2.0×10^{-4} M 4-ATP on the surface of the synthesized colloidal AgNPs. Then, 180 µL of the stock solution was added into a quartz cuvette with 1 cm path-length and 2 mm inside-width, and its initial SERS spectra were recorded with an 785 nm excitation wavelength, 40 mW laser power and 30 s integration time. Finally, 20 µL of sulfide samples with different concentrations were added into the sensing system and incubated for a certain time followed by the measurement of SERS spectra.

Figure S1. The reference XRD pattern for face-centered cubic phase AgNPs (JCPDF No. 65-2871) (a) and monoclinic phase Ag₂S (JCPDF No.65-2356) (b) ^[3, 4].

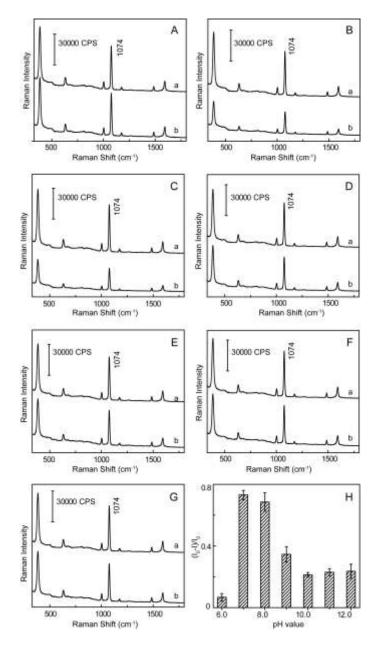
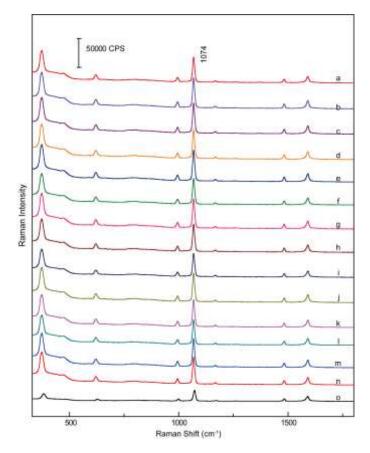


Figure S2. (A) SERS spectra of 4-ATP of the sensing system after the incubation of 3.0×10^{-6} M sulfide for (a) 0min, (b) 1 min, (c) 2 min, (d) 3 min, (e) 4 min, (f) 5 min, (g) 10 min, (h) 15 min, (i) 20 min. (B) Plots of SERS signal decrease of 4-ATP ((I₀-I)/I₀) at the band of 1074 cm⁻¹ versus incubation time. Error bars represent standard deviations for measurement taken from at least three independent



experiments under condition of 3.0×10^{-4} M AgNPs colloids and pH value at 7.0.

Figure S3. SERS spectra of 4-ATP of the sensing system before (a) and after (b) the incubaton of 3.0×10^{-6} M sulfide in different concentration of AgNPs: (A) 5.0×10^{-5} M, (B) 1.0×10^{-4} M, (C) 1.5×10^{-4} M, (D) 2.0×10^{-4} M, (E) 2.5×10^{-4} M, (F) 3.0×10^{-4} M. (G) Plots of SERS signal decrease of 4-ATP ((I₀-I)/I₀) at the band of 1074 cm⁻¹ versus different concentration of AgNPs colloids. Error bars represent standard deviations for measurement taken from at least three independent experiments under condition of 5 min incubation time and pH value at 7.0.

Figure S4. SERS spectra of 4-ATP of the sensing system before (a) and after (b) the incubation of 3.0×10^{-6} M sulfide at different pH value: (A) 6.0, (B) 7.0, (C) 8.0, (D) 9.0, (E) 10.0, (F) 11.0, (G) 12.0. (H) Plots of SERS signal decrease of 4-ATP ((I₀-I)/I₀) at the band of 1074 cm⁻¹ *versus* different pH value. Error bars represent standard deviations for measurement taken from at least three independent experiments under condition of 1.5×10^{-4} M AgNPs colloids and 5 min incubation time.

Figure S5. SERS spectra of 4-ATP of the sensing system collected under the optimum conditions before (a) and after (b-o) the incubation of sulfide $(1.0 \times 10^{-6} \text{ M})$ and other interferents $(2.0 \times 10^{-5} \text{ M})$: (b) HPO₄²⁻, (c) HCO³⁻, (d) CH₃COO⁻, (e) NO³⁻, (f) NO²⁻, (g) ClO₄⁻, (h) Cl⁻, (i) Br⁻, (j) glutathione, (k) L-cysteineand, (l) S₂O₃²⁻, (m) SO₄²⁻, (n) SO₃²⁻, (o) sulfide.

		_		-
Tested Samples	Added (M)	Found (M)	Recovery (%)	RSD (n=3) (%)
Tap water	5.0×10 ⁻⁸	4.2×10 ⁻⁸	84	5.6
	5.0×10 ⁻⁷	5.6×10 ⁻⁷	112	2.4
bovine serum	2.0×10^{-6}	1.8×10^{-6}	90	5.4
	5.0×10 ⁻⁶	4.4×10^{-6}	88	7.6

Table S1 Determination of sulfide in tap water and bovine serum samples

Reference

- [1] P. C. Lee and D. Meisel, J. Phys. Chem., 1982, 86, 3391.
- [2] J. C. Trefry, J. L. Monahan, K. M. Weaver, A. J. Meyerhoefer, M. M. Markopolous, Z. S. Arnold,
- D. P. Wooley and I. E. Pavel, J. Am. Chem. Soc., 2010, 132, 10970.
- [3] E. R. Jette and F. Foote, J. Chem. Phys., 1935, 3, 605.

Electronic Supplementary Material (ESI) for Analytical Methods This journal is C The Royal Society of Chemistry 2013

[4] A. J. Frueh, Z. Kristallog. - Cryst. Mater., 1958, 110, 136.