Supporting Information

Rapid chemical analysis of bear bile: a 5-minute separation and quantitation of bile acids using UHPLC/qTOF-MS

Xue Qiao ^a, Wei Song ^a, Xiong-hao Lin ^a, Qi Wang ^a, Tao Bo ^b, De-an Guo ^a, Junxiu Liu ^{b,*} and Min Ye ^{a,*}

Affiliation:

^a State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, China.

^b Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100191, China.

^c Agilent Technologies, Inc., 3 North Wangjing Road, Beijing 100102, China.

E-mail addresses: yemin@bjmu.edu.cn (M. Ye); liujunxiusanyuan@sina.com (J. Liu).

^{*.} Corresponding authors. Tel./ fax: +86 10 82802024.

Table of contents

- Fig. 1S. Extracted ion chromatograms of bear bile samples and blank matrix.
- Fig. 2S. MS and MS/MS spectra of glycocholic acid and tauroursodeoxycholic acid.
- **Fig. 3S**. Protonated ions of selected compounds (1, 4, 6, 8*, 16* and 17*) and their MS/MS fragments. [M-H] ions of these compounds were marked with blue dots.
- Fig. 4S. Minor MS/MS product ions of compounds 5 (A), 9* (B), 11 (C) and 13* (D).
- **Table 1S**. Intraday and interday variation of the analytical method.
- **Table 2S**. Recovery of bile acid analytes in quantitative analysis.
- **Table 3S**. Stability of the analytes after ambient and refrigerated storage.
- **Table 4S**. Occurrence of major and minor bile acids in 11 commercial bear bile samples.

Figure 1S. Extracted ion chromatograms of bear bile samples and blank matrix.

Figure 2S. MS and MS/MS spectra of glycocholic acid and tauroursodeoxycholic acid.

Figure 3S. Protonated ions of selected compounds (1, 4, 6, 8, 16 and 17) and their MS/MS fragments. [M-H]⁻ ions of these compounds were marked with blue dots.

Figure 4S. Minor MS/MS product ions of compounds 5 (A), 9* (B), 11 (C) and 13* (D).

Table 1S. Intraday and interday variation of the analytical method.

Analyte	Concentration	Intraday Precision	RE	Interday Precision	RE
	$(\mu g/mL)$	RSD% (<i>n</i> =6)	%	RSD% (<i>n</i> =3)	%
TUDCA	LLOQ (0.08)	1.45	-3.53	1.87	-2.58
	MQC (0.25)	2.02	6.71	1.23	4.21
	HQC (0.75)	1.59	1.08	1.95	2.51
TCDCA	LLOQ (0.08)	5.35	4.64	2.32	0.54
	MQC (0.25)	1.66	-2.98	1.53	-5.60
	HQC (0.75)	0.74	-7.39	1.12	-7.73

Note: RSD, relative standard deviation; RE, Relative error (calculated by (measured concentration / nominal concentration - $1) \times 100\%$).

Table 2S. Recovery of bile acid analytes in quantitative analysis.

Analyte		Spiked (µg/mL)	Found (μg/mL)	Recovery (%)
TUDCA	LLOQ	0.0400	0.0423	105.75
	MQC	0.3750	0.3542	94.45
	HQC	3.7500	3.7756	100.68
TCDCA	LLOQ	0.0400	0.0381	95.25
	MQC	0.3750	0.3943	105.15
	HQC	3.7500	4.0045	106.79

Note: Recovery (%) = concentration found / concentration spiked \times 100%.

Table 3S. Stability of the analytes after ambient and refrigerated storage.

Analyte	Nominated conc.	RE%	RE%	RE%		
	$(\mu g/mL)$	(Ambient 24 h)	(Ambient 36 h)	(-20 °C 48 h)		
TUDCA	LLOQ (0.08)	10.05	3.42	12.40		
	MQC (0.25)	-2.25	-3.31	7.59		
	HQC (0.75)	1.20	1.34	3.59		
TCDCA	LLOQ (0.08)	-3.34	-4.60	2.76		
	MQC (0.25)	-3.07	-1.96	-13.30		
	HQC (0.75)	-2.23	-0.77	1.39		

Note: RE, Relative error (calculated by (measured concentration / nominal concentration - $1) \times 100\%$).

Table 4S. Occurrence of major and minor bile acids in 11 commercial bear bile samples.

Sample		Compound No.																			
	1	2	3	4	5	6*	7	8*	9*	10	11	12*	13*	14*	15	16	17*	18	19*	20	21*
1	-	-	+	-	-	-	+	+	+	+	-	-	-	+	+	-	-	+	+	-	-
2	-	-	-	-	-	-	-	+	+	+	+	-	+	+	+	-	+	+	+	+	+
3	-	-	-	-	-	-	-	+	+	+	+	-	+	+	+	-	+	+	+	+	+
4	+	+	-	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+
5	-	-	+	-	-	-	+	+	+	+	-	-	+	+	+	-	-	+	+	+	+
6	-	-	+	-	-	-	+	+	+	+	-	-	-	+	+	-	-	+	+	+	-
7	-	-	-	-	-	-	-	+	+	+	-	-	-	+	+	-	-	+	+	+	-
8	-	-	+	-	-	-	+	+	+	+	-	-	-	+	+	-	-	+	+	+	-
9	-	-	+	-	-	-	-	+	+	+	+	-	+	+	+	+	+	+	+	+	+
10	-	-	+	-	-	-	-	+	+	+	+	-	+	+	+	-	-	+	+	+	+
11	-	-	-	-	-	-	-	+	+	+	-	-	-	+	+	-	-	-	-	+	-

Note: Sample number was in accordance with Table 1; +, detected; -, not detected.