Supporting Information

Rapid chemical analysis of bear bile: a 5-minute separation and quantitation of bile acids using UHPLC/qTOF-MS

Xue Qiao^a, Wei Song^a, Xiong-hao Lin^a, Qi Wang^a, Tao Bo^b, De-an Guo^a, Junxiu Liu^{b,*} and Min Ye^{a,*}

Affiliation:

^a State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, China.

^b Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100191, China.

^c Agilent Technologies, Inc., 3 North Wangjing Road, Beijing 100102, China.

*. Corresponding authors. Tel./ fax: +86 10 82802024.

E-mail addresses: <u>yemin@bjmu.edu.cn</u> (M. Ye); <u>liujunxiusanyuan@sina.com</u> (J. Liu).

Table of contents

- Fig. 1S. Extracted ion chromatograms of bear bile samples and blank matrix.
- Fig. 2S. MS and MS/MS spectra of glycocholic acid and tauroursodeoxycholic acid.
- Fig. 3S. Protonated ions of selected compounds (1, 4, 6, 8*, 16* and 17*) and their

MS/MS fragments. [M-H]⁻ ions of these compounds were marked with blue dots.

Fig. 4S. Minor MS/MS product ions of compounds 5 (A), 9* (B), 11 (C) and 13* (D).

Table 1S. Intraday and interday variation of the analytical method.

Table 2S. Recovery of bile acid analytes in quantitative analysis.

Table 3S. Stability of the analytes after ambient and refrigerated storage.

 Table 4S. Occurrence of major and minor bile acids in 11 commercial bear bile samples.

Figure 1S. Extracted ion chromatograms of bear bile samples and blank matrix.

Figure 2S. MS and MS/MS spectra of glycocholic acid and tauroursodeoxycholic acid.

Figure 3S. Protonated ions of selected compounds (1, 4, 6, 8, 16 and 17) and their MS/MS fragments. [M-H]⁻ ions of these compounds were marked with blue dots.

Figure 4S. Minor MS/MS product ions of compounds 5 (A), 9* (B), 11 (C) and 13* (D).

Analyte	Concentration	Intraday Precision	RE	Interday Precision	RE
	(µg/mL)	RSD% (<i>n</i> =6)	%	RSD% (<i>n</i> =3)	%
TUDCA	LLOQ (0.08)	1.45	-3.53	1.87	-2.58
	MQC (0.25)	2.02	6.71	1.23	4.21
	HQC (0.75)	1.59	1.08	1.95	2.51
TCDCA	LLOQ (0.08)	5.35	4.64	2.32	0.54
	MQC (0.25)	1.66	-2.98	1.53	-5.60
	HQC (0.75)	0.74	-7.39	1.12	-7.73

Table 1S. Intraday and interday variation of the analytical method.

Note: RSD, relative standard deviation; RE, Relative error (calculated by (measured concentration / nominal concentration - 1) × 100%).

Analyte		Spiked (µg/mL)	Found ($\mu g/mL$)	Recovery (%)
TUDCA	LLOQ	0.0400	0.0423	105.75
	MQC	0.3750	0.3542	94.45
	HQC	3.7500	3.7756	100.68
TCDCA	LLOQ	0.0400	0.0381	95.25
	MQC	0.3750	0.3943	105.15
	HQC	3.7500	4.0045	106.79

Table 2S. Recovery of bile acid analytes in quantitative analysis.

Note: Recovery (%) = concentration found / concentration spiked \times 100%.

Analyte	Nominated conc.	RE%	RE%	RE%
	(µg/mL)	(Ambient 24 h)	(Ambient 36 h)	(-20 °C 48 h)
TUDCA	LLOQ (0.08)	10.05	3.42	12.40
	MQC (0.25)	-2.25	-3.31	7.59
	HQC (0.75)	1.20	1.34	3.59
TCDCA	LLOQ (0.08)	-3.34	-4.60	2.76
	MQC (0.25)	-3.07	-1.96	-13.30
	HQC (0.75)	-2.23	-0.77	1.39

Table 3S.	Stability	of the	analytes	after	ambient	and	refrigerated storage	ge.

Note: RE, Relative error (calculated by (measured concentration / nominal concentration - 1) \times 100%).

Sample										Co	mpoun	d No.									
	1	2	3	4	5	6*	7	8*	9*	10	11	12*	13*	14*	15	16	17*	18	19*	20	21*
1	-	-	+	-	-	-	+	+	+	+	-	-	-	+	+	-	-	+	+	-	-
2	-	-	-	-	-	-	-	+	+	+	+	-	+	+	+	-	+	+	+	+	+
3	-	-	-	-	-	-	-	+	+	+	+	-	+	+	+	-	+	+	+	+	+
4	+	+	-	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+
5	-	-	+	-	-	-	+	+	+	+	-	-	+	+	+	-	-	+	+	+	+
6	-	-	+	-	-	-	+	+	+	+	-	-	-	+	+	-	-	+	+	+	-
7	-	-	-	-	-	-	-	+	+	+	-	-	-	+	+	-	-	+	+	+	-
8	-	-	+	-	-	-	+	+	+	+	-	-	-	+	+	-	-	+	+	+	-
9	-	-	+	-	-	-	-	+	+	+	+	-	+	+	+	+	+	+	+	+	+
10	-	-	+	-	-	-	-	+	+	+	+	-	+	+	+	-	-	+	+	+	+
11	-	-	-	-	-	-	-	+	+	+	-	-	-	+	+	-	-	-	-	+	-

Table 4S. Occurrence of major and minor bile acids in 11 commercial bear bile samples.

Note: Sample number was in accordance with Table 1; +, detected; -, not detected.