Supporting Information:

Photophysical Effects of Nitric Oxide and S-Nitrosocysteine on Acridine Orange: Use as Sequential Sensing Platform for NO, Cysteine, Cysteine-NO and Hg²⁺ under Physiological Condition

Kallol Bera, Barun Kumar Maity, Moupriya Nag, Manjur Oyasim Akram and Soumen Basak*

Scheme S2: A plausible NO exchange mechanism.

Scheme S3: Formation of Hg²⁺-Cysteine complex

Figure S1: Titration of AO (12 μ M) with increasing concentration of H₂O₂ (20-100 μ M).

Figure S2: Titration of AO (8 μ M) with increasing concentration NO₂ (10-80 μ M).

Figure S3: Absorption spectra of only NO_2^- (10-60 μ M) in distilled water.

Figure S4: Titration of AO (12 μ M) with increasing concentration NO₃⁻ (20-80 μ M).

Figure S5. Fluorescence spectra of AO (10 μ M) in presence of increasing concentration of NO (0-32 μ M) in PBS at pH 7.2 at 25^oC. Inset: Plot of fluorescence intensity at 527 nm vs number of equivalents of NO.

Figure S6: Relative decrease in fluorescence response at 527 nm (excitation at 491 nm) of AO (10 μ M) in water in presence of 40 μ M each of NO (1), NO₂⁻(2), NO₃⁻(3), HNO (4), OH⁻(5), Cl⁻(6), Br⁻(7), H₂O₂ (8), ClO⁻(9), AO only (10).

Figure S7 : (b) Relative change in O.D. (at 336 nm) of AO:NO (10:32 μ M) in pure water in presence of 40 μ M each of cysteine (1), glycine (2), aspartic acid (3), lysine (4), histamine (5), alanine (6), phenyle alanine (7), tyrosine (8), tryptophan (9) and 10:24 μ M AO:NO (10).

Figure S8: Relative decrease in O.D. (at 335 nm) of AO:Cys:NO (10:40:32 μ M) in water in presence of 16 μ M of Hg²⁺ (1), Cu²⁺ (2), Zn²⁺ (3), Ag⁺ (4), Pb²⁺ (5), Cd²⁺ (6), Ni²⁺ (7), Co²⁺ (8), Fe²⁺ (9), Mn²⁺ (10), Mg²⁺ (11), Ca²⁺ (12), Ba²⁺ (13), Li⁺ (14), K⁺ (15), Na⁺ (16), Cr²⁺ (17) and Cys-NO (18).