SUPPLEMENTARY INFORMATION

Enhanced determination of As-phytochelatin complexes in *Chlorella vulgaris* using focused sonication for extraction of water-soluble species

L. M. Pantoja^a, D. Purchase^a, H. Jones^a, J. Feldmann^b, H. Garelick H.^a*

^a Department of Natural Sciences, Middlesex University. The Burroughs, London, NW4 4BT, United Kingdom.

^b Environmental & Analytical Chemistry TESLA (Trace Element Speciation Laboratory) University of Aberdeen, College of Physical Science Chemistry

* Corresponding author: Tel: +44 (0)20 8411 5917 Fax: +44 (0)20 8411 6774 e-mail address: H.Garelick@mdx.ac.uk

Methods:

As-GS/PC Extraction

Cells were counted and a known amount of cells transferred, Cells were harvested by centrifugation (5 min, 3000 *g*) washed with deionised water twice and transferred to 15 mL centrifuge tubes. Cells were then washed with desorption solution (1 mM K₂HPO₄, 5 mM MES, 0.5 mM Ca(NO₃)₂, pH 6) for 10 min (Sandau, Pulz and Zimmermann, 1996; Abedin, Feldmann and Meharg, 2002). The supernatant was discarded and pelleted cells extracted with 2 mL of 1% formic acid, the mixture was sonicated for 30 s using a Minidelta 8935 generator (FFR ultrasonics, 500 W, 35 kHz) fitted with a 3 mm titanium micro-tip. The micro-tip was rinsed with methanol, then sonicated in 1% formic acid for 10 s between each extraction to avoid cross-contamination. The volume of the extract was determined gravimetrically.

Total arsenic quantification

Total arsenic was quantified using an ICP-MS (X series II, Thermo Scientific, UK) in CCT (Collision Cell Technology) mode with He/H as collision cell gas using 20 μ g L⁻¹ gallium as an internal standard. The instrument was tuned daily using a 10 μ g L⁻¹ indium, cerium, cobalt, uranium and lithium solution and the software (Plasmalab) was provided from the manufacturer.

Quantitative speciation analysis

Samples were run immediately after extraction using HPLC-ICP-MS. Separation was achieved in a Discovery C_{18} column (15 x 2.1 mm) fitted with a pre-column Discovery C_{18} . Experimental/instrumental conditions were based on the previous work of (Bluemlein, Rabb and Feldmann, 2009). A gradient elution was used with 0.1% formic acid (eluent A) and 99.9% HPLC grade methanol (eluent B). The detailed elution profile was as follows: 0-20 min linear increase 0-20% B, 20-30 min 20% B, 30-32 min 20-0% B and 32-40 min 0%B. The flow rate was 0.2 mL min⁻¹.

The following parameters were adjusted for O_2 CCT in the ICP-MS according to the manufacturer's instructions: O_2 cell gas flow 0.6-1.45 mL min⁻¹, hexapole bias -9 V, quadrupole bias -14 V, focus voltage -2 V, D2 voltage -100 V. A post column make- up flow was achieved with a tee connector and 0.9 mL min⁻¹ indium (20 μ g L⁻¹ in 2% HNO₃) as internal standard. The injection volume was 50 μ L, the

monitored masses were: As, m/z 91 ([75 As 16 O+]), S, m/z 48 ([32 S 16 O+]) and In, m/z 115. Fresh external standards were prepared for quantification. For arsenic, different solutions of DMA were used and L-cysteine for the quantification of sulphur.

Method quantification limits (MQL) were calculated by multiplying 10 times the standard deviation signal (at the retention time of the quantification species) of 7 consecutive blank samples. Method detection limits (MDL) were calculated by 3.14 times the standard deviation signal of 7 consecutive blank samples to achieve 99% confidence intervals (CI) (at the retention time of the quantification specie).

A correction for methanol content in the mobile phase was performed as follows (Amayo et al., 2011): A blank was injected through the same chromatographic conditions. A post column addition of a solution containing 100 mg L⁻¹ DMA and 20 μ g L⁻¹ indium (as internal standard) was made. The blank was analysed by ICP-MS for arsenic, sulphur and indium at m/z 91 ([⁷⁵As¹⁶O+]), S, m/z 48 ([³²S¹⁶O+]) and In, m/z 115.

Kinetics and concentration effect experiments

C. vulgaris cells were cultured for 3-5 days in Bold's media free of arsenic. The cells were then exposed to different concentrations (0-200 mg L^{-1}) of iAs(III), iAs(V) and DMA for 48 h. The concentrations of arsenic used in this study were chosen to elicit a response in *C. vulgaris* cells rather than to reflect natural environment conditions. In other experiments cells were exposed to 50 mg.L⁻¹ of iAs(III), iAs(V) or DMA at different exposure times (4, 24, 48 and 72 h). The experiments were performed in triplicates. Cells were supplemented with 0.5% dextrose. GSH, PCs and As-GS/PC complexes were analysed.

iAs(V) exposure experiments results

Fig S1 *C. vulgaris* cells exposed to 1, 5, 10, 50, 100, 150 and 200 mg L^{-1} of iAs(V) for 24 h, analysed by HPLC-ICP-MS, two replicates (A and B)

Fig S2 *C. vulgaris* cells exposed to 50 mg L^{-1} of iAs(V) for 4, 48, 72 and 96 h, analysed by HPLC-ICP-MS, two replicates (A and B)

Fig S3 Peak identification chromatogram of *C. vulgaris* cells exposed to 50 mg L⁻¹ iAs(III) for 48 h, extracted in 1% formic acid 30 s focused sonication. A) signal for arsenic at m/z 91 B) signal for sulphur at m/z 48. Peak identification: **U1-3** Unknowns, **P4** GS-As(III)-PC₂/GS-As(III)- γ -(Glu-Cys)₂, **P5** As(III)- γ -(Glu-Cys)₂, **P6** GS-As(III)-PC₂, **P7** GS-As(III)- γ -(Glu-Cys)₂-Ala, **P8** As(III)-PC₃/ MMA(III)-PC₂, **P9** MMA(III)-PC₂, **P10** As(III)-PC₃/ As(III)-(PC₂)₂, **P11** As(III)-(PC₂)₂/ As(III)- γ -(Glu-Cys)₃-Ala/ As(III)- γ -((Glu-Cys)₂)₂-Ala/ MMA(III)- γ -(Glu-Cys)₂-Ala, **P12** As(III)-PC₄ and **P13** As(III)-PC₄.

MS/MS analysis

GSH/PC molecules:

Fig S4 MS/MS spectra for GS-As(III)-PC₂ m/z 460.0663 RT:9.88 min, *C. vulgaris* cells exposed to 50 mg L⁻¹ iAs(III), analysed using ES-MS/MS (Orbitrap Discovery LTQ-XL)

Fig S5 MS/MS spectra for GS-As(III)-PC₂ m/z 919.1247 RT:9.92 min, *C. vulgaris* cells exposed to 50 mg L⁻¹ iAs(III), analysed using ES-MS/MS (Orbitrap Discovery LTQ-XL)

Fig S6 MS/MS spectra for MMA(III)-PC₂ m/z 628.0729 RT:11.31 min , *C. vulgaris* cells exposed to 50 mg L⁻¹ iAs(III), analysed using ES-MS/MS (Orbitrap Discovery LTQ-XL)

Fig S7 MS/MS spectra for As(III)-PC₃ m/z 844.0931 RT:11.49 min , *C. vulgaris* cells exposed to 50 mg L⁻¹ iAs(III), analysed using ES-MS/MS (Orbitrap Discovery LTQ-XL)

Fig S8 MS/MS spectra for As(III)-(PC₂)₂ m/z 576.0923 RT:13.07 min , *C. vulgaris* cells exposed to 50 mg L⁻¹ iAs(III), analysed using ES-MS/MS (Orbitrap Discovery LTQ-XL)

Fig S9 MS/MS spectra for As(III)-PC₄ m/z 1076.1455 RT:15.02 min , *C. vulgaris* cells exposed to 50 mg L⁻¹ iAs(III), analysed using ES-MS/MS (Orbitrap Discovery LTQ-XL)

Fig S10 MS/MS spectra for DMAS^V-GS m/z 444.0247 RT 4.37 min , *C. vulgaris* cells exposed to 50 mg L⁻¹ iAs(III), analysed using ES-MS/MS (Orbitrap Discovery LTQ-XL)

hGSH/PC molecules:

Fig S11 MS/MS spectra for γ -(Glu-Cys)₂-Ala m/z 554 RT 6.2845 min *C. vulgaris* cells exposed to 50 mg L⁻¹ iAs(III), analysed using ES-MS/MS (Orbitrap Discovery LTQ-XL)

Fig S12 MS/MS spectra for As(III)- γ -(Glu-Cys)₃-Ala m/z 858 RT 10.9082 min *C. vulgaris* cells exposed to 50 mg L⁻¹ iAs(III), analysed using ES-MS/MS (Orbitrap Discovery LTQ-XL)

Fig S13 MS/MS spectra for As(III)- γ -((Glu-Cys)₂)₂-Ala m/z 583 RT 14.6667 min *C. vulgaris* cells exposed to 50 mg L⁻¹ iAs(III), analysed using ES-MS/MS (Orbitrap Discovery LTQ-XL)

Fig S14 MS/MS spectra for MMA(III)- γ -(Glu-Cys)₂₋Ala m/z 642 RT 14.8483 min *C. vulgaris* cells exposed to 50 mg L⁻¹ iAs(III), analysed using ES-MS/MS (Orbitrap Discovery LTQ-XL)

Fig S15 MS/MS spectra for γ -(Glu-Cys)₂ m/z 483 RT 4.6997 min *C. vulgaris* cells exposed to 50 mg L⁻¹ iAs(III), analysed using ES-MS/MS (Orbitrap Discovery LTQ-XL)

Fig S16 MS/MS spectra for mins GS-As(III)- γ -(Glu-Cys)₂ m/z 431 RT 8.0730 *C. vulgaris* cells exposed to 50 mg L⁻¹ iAs(III), analysed using ES-MS/MS (Orbitrap Discovery LTQ-XL)

Molecule	m/z		b1	y8	b2	y7	b3	y6	b4	y5	b5	y4	b6	y3	b7	y2	b8	y1
Phytochelatins																		
PC ₂	540	Т	130.1		233.1		362.1		465.1			411.1		308.1		179.1		76.0
		F	130.1		233.1		362.1		465.1			411.1		308.1		179.1		76.0
PC3	772	Т	130.1		233.1		362.1	643.2	465.1	540.1	594.2	411.1	697.2	308.1		179.1		76.0
		F	130.1		233.1		362.1	643.2	465.1	540.1	n.o.	411.1	697.2	309.1		n.o.		76.0
As(III)-PC ₃	844	Т	130.1		233.1		362.1	643.2	465.1	540.1	594.2	411.1	697.2	308.1		179.1		76.0
		F	n.o.		n.o.		362.0	n.o.	465.1	540.1	594.0	411.1	697.0	308.1		n.o.		n.o.
GS-As(III)-PC ₂	460	Т	130.1		233.1		362.1		465.1	540.1		411.1		308.1		179.1		76.0
		F	129.7		233.1		362.0		n.o.	540.1		422.1		308.1		179.0		n.o.
$As(III)-(PC_2)_2$	576	Т	130.1		233.1		362.1		465.1	540.1	594.2	411.1		308.1		179.1		76.0
. ,,_		F	n.o.		233.1		n.o.		465.1	540.1	594.0	411.1		308.1		n.o.		n.o.
As(III)-PC₄	1076	Т	130.1	875.1	233.1	772.2	362.1	643.2	465.1	540.1	594.2	411.1	697.2	308.1	826.2	179.1	929.2	76.0
() -		F	n.o.	n.o.	n.o.	n.o.	n.o.	n.o.	n.o.	n.o.	n.o.	411.1	n.o.	308.4	n.o.	n.o.	n.o.	n.o.
MMA(III)-PC₂	628	Т	130.1		233.1		362.1		465.1			411.1		308.1		179.1		76.0
() <u>-</u>		F	n.o.		233.1		n.o.		n.o.			n.o.		n.o.		178.8		n.o.
DMAS ^V -GS	444	Т	136.9		231.1											176.9		
		F	136.9		231.1											176.9		
Ala GSH/PC																		
γ -(Glu-Cys) ₂ Ala	554	Т	130.1		233.1		362.1		465.1			425.1		322.1		193.1		90.1
1 ())2		F	130.1		233.1		362.1		465.1			425.1		322.1		193.1		90.1
GS-As(III)-y-(Glu-Cys)-Ala	467	Т	130.1		233.1		362.1		465.1	554.2		425.1		322.1		193.1		90.1
		F	no		233.1		362.0		no	554.2		425.1		n o		192.2		no
$\Delta c(III) \sim ((Gh, Gw)) = \Delta h$	583	T	130.1		233.1		362.1		465.1	554.2		425.1		322.1		193.1		90.1
$AS(III)-\gamma$ -((Old-Cys) ₂) ₂ -Ald		E	no		no		no		no	554.2		125 1		no		no		no
		1	11.0.		11.0.		11.0.		11.0.	554.2		720.1		11.0.		11.0.		11.0.
	483	т	130.1		233.1		362.1							354.1		251.1		122.0
γ -(Gul-Cys) ₂	100				000.1		262.4							254.4		051.4		101.0
	121	г т	120.4		∠33.1 222.4		302.1		200.0	102 1				354.1		201.1		121.2
$GS-As(III)-\gamma-(Glu-Cys)_2$	431	I	130.1		233.1		302.1		380.0	403.1				354.1		201.1		122.0
			n.o.		233.1		362.0		380.0	483.1				354.1		250.9		122.1

 Table S1 Summary of fragments found in MS/MS analysis C. vulgaris cells exposed to 50 mg L⁻¹ iAs(III), analysed using ES-MS/MS (Orbitrap Discovery LTQ-XL) (n.o.- not observed, T- Theoretical, F - Found)