Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2014

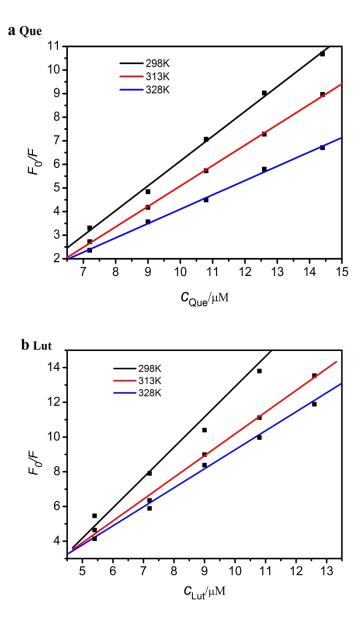
Supporting Information

for

Selective recognition of luteolin and quercetin based on the specific interaction of ortho-dihydroxy substituents with a Zinc(II) complex

Bowen Xiao, a Huijuan Wang, a Xijuan Zhao, b Yuanfang Li*a

^aKey Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Fax: (+86) 23 68367257; Tel: (+86) 23 68254659; E-mail: liyf@swu.edu.cn


^bCollege of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, PR China. E-mail: xijuanzh@swu.edu.cn

HPLC Analysis

The chromatographic separation was carried out on a Hitachi L-2000 HPLC system consisting of an auto-sampler and binary pump system coupled with a UV-Vis detector. 20 µL of each sample solution was injected and analyzed by a Eclipse XBD-C18 column (4.6×150 mm, $3.5 \mu m$) and the chromatogram was acquired at 350 nm for luteolin. The solvent system was a binary mobile phase: solution A was Milli-Q water containing 0.2% (V:V) phosphoric acid, solution B was methanol, and all the reagents were HPLC grade. The column temperature was kept at 25°C and the flow rate was 1mL·min⁻¹.

E-mail address: xijuanzh@swu.edu.cn, liyf@swu.edu.cn

^{*} Corresponding author. Tel.: +86-23-68254659; Fax: +86-23-68367257;



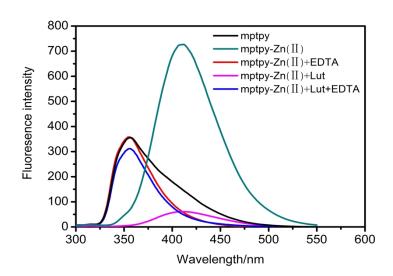
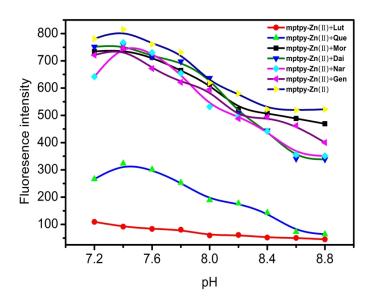

Fig. S1 Plots of F_0/F versus concentrations of quercetin and luteolin. $c_{\text{mptpy-Zn(II)}}$, 2.1 μM ;

 Table S1 Stern-Volmer quenching constants of the Que and Lut at different temperatures


		Que		Lut				
T/K	K_{SV} / [10 ⁶ L·M ⁻¹]	$K_q/$ [10 ¹⁴ L·M ⁻¹ ·S ⁻¹]	Rª	SD^{b}	K_{SV} / $[10^6 \mathrm{L}\cdot\mathrm{M}^{-1}]$	K_q / [$10^{14} \text{L} \cdot \text{M}^{-1} \cdot \text{S}^{-1}$]	Rª	SD^b
298	1.052	3.987	0.9985	0.02	1.744	6.606	0.9911	0.04
313	0.8658	3.290	0.9997	0.03	1.253	4.746	0.9983	0.02
328	0.5852	2.217	0.9919	0.02	1.095	4.148	0.9976	0.03

a is the correlation coefficient, b is the standard deviation. $c_{\text{mptpy-Zn(II)}}$, 2.1 μM ;

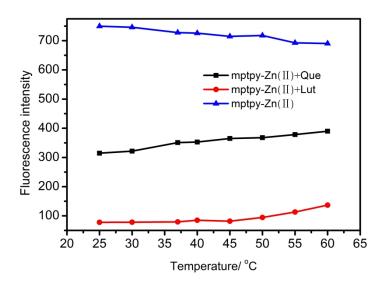


Fig. S2 Changes of the fluorescence emission of mptpy when added to Zn²⁺, luteolin, quercetin and EDTA in succession. $c_{\rm mptpy}$, 2.1 μM; $c_{\rm Zn}^{2+}$, 2.1 μM; $c_{\rm Lut}$ = $c_{\rm Que}$, 9.0 μM; $c_{\rm EDTA}$, 1 mM; $\lambda_{\rm ex}$, 280 nm;

Fig. S3 Effect of various pH on fluorescence of mptpy-Zn(II) in the absence and presence of various flavonoids. $c_{\text{mptpy-Zn(II)}}$, 2.1 μ M; $c_{\text{Gen}} = c_{\text{Nar}} = c_{\text{Dai}} = c_{\text{Que}} = c_{\text{Lut}}$, 9.0 μ M; λ_{ex} , 280 nm; λ_{em} , 409 nm.

Fig. S4 Effect of the temperature on fluorescence of mptpy-Zn(II) in the absence and presence of luteolin/quercetin. $c_{\rm mptpy-Zn(II)}$, 2.1 μ M; $c_{\rm Que}$ = $c_{\rm Lut}$, 9.0 μ M; $\lambda_{\rm ex}$, 280 nm; $\lambda_{\rm em}$,409 nm; Tris-HCl, pH 7.4.

Table S2 Effects of the coexisting substances

substance	$c_{\rm s}/c_{ m Lut}$	$(F-F_0)/F_0 \times 100(\%)$	substance	$c_{\rm s}/c_{ m Lut}$	$(F-F_0)/F_0 \times 100(\%)$
Na ⁺ , CO ₃ ²⁻	100	7.2	Na ⁺ , NO ₃ -	80	-1.6
Na ⁺ , HCO ₃ ⁻	50	-1.7	Na ⁺ , SO ₄ ²⁻	60	-0.3
Na ⁺ , Cl ⁻	80	2.6	glucose	100	4.8
K ⁺ , Cl ⁻	80	3.0	fructose	80	1.3
Ca ²⁺ , Cl ⁻	60	4.2	sucrose	100	8.3
Mg ²⁺ , Cl ⁻	80	3.8			

 $c_{\text{mptpy-Zn(II)}}$, 2.1 μ M; c_{luteolin} , 9.0 μ M; λ_{ex} , 280 nm; λ_{em} ,409 nm; Tris-HCl, pH 7.4. c_{s} is the concentration of substance, c_{Lut} is the concentration of luteolin.

 F_0 and F are the fluorescence intensity of luteolin interacting with mptpy-Zn($\rm II$) in the absence and presence of the interfering substances, respectively.