Supporting Information

Rhodamine-labelled simple architectures for fluorometric and colorimetric sensing of Hg² and Pb² ions in semi-aqueous and aqueous environments

Kumaresh Ghosh^{*}a, Tanmay Sarkar^a, Anupam Majumdar^a, Sushil Kumar Mondal^b, Anisur Rahman Khuda-Bukhsh^b

^aDepartment of Chemistry, University of Kalyan, ^bDepartment of Zoology, University of Kalyani, Kalyani-741235, India. Email: ghosh_k2003@yahoo.co.in, Fax: +913325828282; Tel: +913325828750.

1. Spectral data of compounds

¹H NMR of 3 (CDCI₃, 400 MHz):

¹H NMR of 1 (CDCI₃, 400 MHz):

S4

2. Change in emission of receptor 1 with Zn²⁺, Fe³⁺, Cd²⁺, Co²⁺, Pb²⁺, Mg²⁺, Ni²⁺, Ag⁺ in MeCN/Water (4/1,v/v; 10 μ M tris HCI buffer; pH 7).

Figure S1. Change in emission of receptor **1** ($c = 2.25 \times 10^{-5}$ M) upon addition of (a) Zn²⁺, (b) Fe³⁺, (c) Cd²⁺, (d) Co²⁺, (e) Cu²⁺, (f) Mg²⁺, (g) Ni²⁺, (h) Ag⁺ in MeCN/Water (4/1, v/v; 10 μ M tris HCl buffer; pH = 7) (in all cases [cation] 4.5 x 10⁻⁴ M) [λ_{exc} = 490 nm].

3. Change in absorbance of receptor 1 with various metal ions in MeCN/water (4/1, v/v; 10 μ M tris HCI buffer; pH = 7)

Figure S2. Absorption titration spectra for **1** (c = 2.25 x 10⁻⁵ M) with (a) Cu²⁺, (b) Fe³⁺, (c) Zn²⁺, (d) Cd²⁺, (e) Mg²⁺, (f) Ni²⁺, (g) Co²⁺ and (h) Ag⁺ in MeCN/water (4/1,v/v; 10 μ M tris HCI buffer; pH =7) (in all cases [cation] =4.5 x 10⁻⁴ M).

4. ¹H NMR study, UV and Fluorescence Job plots for 1 with Hg²⁺ and Pb²⁺ measured at 556 nm.

Figure S3a. Partial ¹H NMR (400 MHz, CDCl₃) of (A) 1 (5.21 x 10^{-3} M); (B) with 1 equiv. amount of Pb(ClO₄)₂ and (c) with 1 equiv. Hg(ClO₄)₂.

Figure S3b. Fluorescence Job plots for **1** with (a) Hg²⁺; (b) Pb²⁺; UV Job plots for **1** with (c) Hg²⁺, (d) Pb²⁺ in MeCN/Water (4/1,v/v; 10 μ M tris HCl buffer; pH = 7) ([H] = [G] = 4.5 x 10⁻⁵ M).

5. Change in fluorescence spectra of (a) 1- Hg^{2+} , (b) 1- Pb^{2+} complex upon addition of KI

Figure S4: (a) Change in fluorescence spectra of (a)**1- Hg**²⁺, (b) **1- Pb**²⁺ complex ($c = 4.1 \times 10^{-5}$ M) in MeCN/Water (4/1,v /v) 10 μ M tris HCI buffer (pH 7) upon addition of (a) KI ($c = 2.1 \times 10^{-3}$ M).

6. Colorimetric change of 1 with Pb²⁺:

Figure S5: Change in fluorescence spectra of **1** ($c = 2.25 \times 10^{-5}$ M) in CH₃CN/water (4/1, v/v; 10 μ M tris HCl buffer, pH = 7.0) upon addition of (a) Hg²⁺ and (b) Pb²⁺ of different concentrations.

7. MTT assay.

Figure S6. Cell viability of HeLa cells treated with different concentrations (1 μ M-100 μ M) of chemosensor 1 for six hrs determined by MTT assay.

8. FTIR spectra of 1, Merrifield resin and 2:

Figure S7. FTIR spectra of 1, Merrifield resin and 2.

9. FTIR spectra of 2, 2- Hg²⁺ and 2- Pb²⁺complex:

Figure S8. FTIR spectra of 2 and 2- Hg²⁺, 2- Pb²⁺ complexes.

10. Reuse study:

Figure S9. Reuse study of 2 for Hg²⁺ ions.