Electronic Supplementary Information

Development of a Gold Nanoparticle Based Anti-aggregation Method for Rapid Detection of Mercury(II) in Aqueous Solutions

Genin Gary Huang*, Yen-Ting Chen, and Yu-Rong Lin

Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan

Figure S1. Structures of six aggregation agents used in this study.

Figure S2. Extinction spectra of AuNPs under different gold nanoparticle concentrations (from top to bottom: 1.425 nM, 2.85 nM, 4.275 nM, and 5.7 nM) in the absence of Hg²⁺ (a~d) and in the presence of 1 μ M Hg²⁺ (e~h). The particle concentration of gold nanocolloids was 2.85 nM, l-penicillamine concentration was 2 μ M, the concentration of citrate buffer was 5 mM, the concentration of Cl⁻ was 10 mM, and the pH was 2.4.

Figure S3. Extinction spectra of AuNPs in the presence of different concentrations of Hg^{2+} . The concentration of 1-penicillamine was 2 μ M, the concentration of citrate buffer was 5 mM, the concentration of Cl⁻ was 10 mM, the pH was 2.4 and the incubation time was 2 min.

Sample	Added	Found	Recovery	RSD
	(nM)	(nM)	(%)	(%, n=3)
1	100	95.96	96.0	2.5
2	200	191.55	95.8	1.7
3	400	397.15	99.3	2.2

Table S1. Recovery of the proposed method for determination of Hg^{2+} in tap water samples.