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Calibration with second-order multivariate models

PARAFAC

In the PARAFAC model, the second-order data for the Ical training matrices Xi,cal, each 

of them as a JK data table, are joined with the unknown sample matrix Xu into a three-way 

data array X, whose dimensions are [(Ical + 1)JK]. If the array X is trilinear, each responsive 

component can be explained in terms of three vectors an, bn and cn, which collect the relative 

concentrations [(Ical + 1)1] for component n, and the profiles in both modes (J1) and (K1) 

respectively. The PARAFAC model1 can be defined as: 

Xijk =  +Eijk  (1)


N

i
knjnin cba

1

in which N is the total number of responsive components, ain is the relative concentration of 

component n in the ith. sample, and bjn and ckn are the signals at the j and k variables, 

respectively. The values of Eijk are the elements of the array E, which contains the residuals 

not captured by the model. The column vectors an, bn and cn are collected into the 

corresponding score matrix A and loading matrices B and C.

The decomposition of X, usually accomplished through an alternating least-squares 

minimization scheme2,3, retrieves the profiles in both data dimensions (B and C) and relative 

concentrations (A) of individual components in the (Ical + 1) mixtures, whether they are 

chemically known or not, constituting the basis of the second-order advantage. 

Some relevant issues concerning the application of PARAFAC to the calibration of 

three-way data have to be considered.

 

Initialization of the algorithm
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Different strategies to manage this step include the use of vectors given by GRAM 

(generalized rank annihilation method)4, known spectral profiles of pure components, or 

loadings giving the best fit after a small number of PARAFAC runs with a few iterations. 

These alternatives can be found in Bro's PARAFAC package5.

Determination of the number of responsive components

Several methods can be applied to estimate the number of responsive components (N). 

Core consistency analysis, a useful diagnostic tool6, involves the study of the structural model 

based on the data and the estimated parameters of gradually augmented models. If the 

addition of more components does not considerably improve the fit, the model could be 

considered as suitable, and the core consistency parameter significantly drops from a value of 

ca. 50. The evaluation of the PARAFAC residual error, i.e. the standard deviation of the 

elements of the array E in equation (1)2, which decreases with increasing N until it stabilizes 

at a value compatible with the instrumental noise, can be considered as another useful 

technique. N can be established as the smallest number of components for which the residual 

error is not statistically different than the instrumental noise. 

Restriction of the least-squares fit: With the aim of obtaining physically interpretable 

profiles, the alternating least-squares PARAFAC fitting can be constrained by several 

available restrictions. For instance, non-negativity restrictions in all three modes allow the fit 

to converge to the minimum with physical meaning from the several minima which may exist 

for linearly dependent systems.

Identification of specific components
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The estimated profiles retrieved by the model have to be compared with those for 

standard solutions of the analytes of interest in order to identify the chemical components 

under investigation, since the order in which they are sorted can be different between 

samples, i.e. it depends on their contribution to the overall spectral variance. 

Calibration of the model to obtain absolute concentrations in unknown samples

Due to the fact that the three-way array decomposition provides relative values (A), 

absolute analyte concentrations can only be obtained after calibration. Calibration is carried 

out by regression of the set of standards with known analyte concentrations (contained in an 

Ical1 vector y) against the first Ical elements of column an: 

k = y+  [a1,n | ... | aIcal,n ]       (2)

in which '+' implies taking the pseudo-inverse. Then, for each test sample, the unknown 

relative concentration of n has to be converted to absolute by division of the last element of 

column an [a(Ical+1)n] by the slope of the calibration graph k:

yu = a(Ical+1)n / k       (3)

MCR-ALS

In this multivariate method, an augmented data matrix is created from the test data 

matrices and the calibration data matrices. The matrices are of size JK, where J is the 

number of elution times (number of rows of each data matrix) and K the number of emission 

wavelengths (number of columns of each data matrix).  Augmentation can be performed 

either column-wise or row-wise, depending on the type of experiment being analyzed and 
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also on the presence of severe overlapping in one of the data modes7,8. In the presently 

studied case, the augmentation was implemented column-wise, because in this way the 

chemical rank of the augmented matrix is better preserved. 

In the column-wise augmentation mode, the bilinear decomposition of the augmented 

matrix is performed according to the expression:

D = C ST + E (4)

where the columns of D contain the chromatograms measured at J  times for (Ical + 1) 

different samples at K wavelengths, the columns of C contain the augmented elution time 

profiles of the intervening species, the columns of S their related spectra, and E is a matrix of 

residuals not fitted by the model. The sizes of these matrices are D, J(Ical + 1)×K, C, J(Ical + 

1)×N, S, K×N, E, J(Ical + 1)× K (N is the number of responsive components). As can be seen, 

D contains data for the Ical calibration samples and for a given test sample. Decomposition of 

D is achieved by iterative least-squares minimization of the residuals contained in E, under 

suitable constraining conditions, i.e., non-negativity in the spectral profiles. 

In the case of samples containing uncalibrated interferents, a useful additional 

restriction is the so-called correspondence among species and samples. The latter one 

provides information as to the presence or absence of each analyte in each sample (for 

example, uncalibrated interferents are present in the unknown samples, but absent in the 

calibration samples). However, in this work this constraint was not applied.

MCR-ALS requires initialization with parameters as close as possible to the final 

results. For example, the species spectra can be supplied, as obtained from either pure analyte 

standards or from the analysis of the so-called 'purest' spectra9–10, a multivariate algorithm 

which extracts pure component spectra from a series of spectra of mixtures of varying 

composition9. In the present work, the latter option was applied.



S7

 After MCR-ALS decomposition of D, concentration information contained in C can 

be used for quantitative predictions, by first defining the analyte concentration score as the 

area under the profile for the ith. sample:

 (5)



iJ

Jij
njCnia

)1(1

),(),(

where a(i,n) is the score for the analyte n in the sample i, and C(j,n) is the element of the 

analyte profile in the augmented mode. The scores are employed to build a pseudo-univariate 

calibration graph against the analyte concentrations, predicting the concentration in the test 

samples by interpolation of the test sample score, as discussed above for PARAFAC.

U-PLS/RBL

In U-PLS, the original second-order data are unfolded into vectors before PLS is 

applied11. In this algorithm, concentration information is employed in the calibration step 

(without including data for the unknown sample) in order to obtain a set of loadings P and 

weight loadings W (both of size JKA, where J is the number of data points in the first data 

dimension, K is the number of data points in the second data dimension and A is the number 

of latent factors), as well as regression coefficients v (size A1). They are estimated from Ical 

calibration data matrices Xc,i, which are first vectorized into JK1 vectors, and calibration 

concentrations y (size Ical1). 

The parameter A is usually selected by leave-one-out cross-validation (124). Thus, A is 

estimated by calculating the ratios F(A) = PRESS(AA*)/PRESS(A), where PRESS = (ci,act – 

ci,pred)2, A* corresponds to the minimum PRESS, and ci,act and ci,pred are the actual and 
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predicted concentrations for the ith. sample left out of the calibration during cross validation, 

respectively. Then, the A value leading to a probability of less than 75 % that F1 is selected.

In the absence of interferences in the test sample, v could be employed to estimate the 

analyte concentration:

yu = tu
T v  (6)

in which tu is the test sample score, obtained by projection of the unfolded data for the test 

sample vec(Xu) onto the space of the A latent factors:

tu = (WT P)–1 WT vec(Xu)  (7)

where vec() is the unfolding operator.

When unexpected interferences occur in Xu, then the sample scores given by equation 

(7) are not suitable for analyte prediction using equation (6). In this case, the residuals of the 

U-PLS prediction step [sp, see equation (8)] will be abnormally large in comparison with the 

typical instrumental noise:

sp = || ep || / (JK–A)1/2 = || vec(Xu) – P (WT P)–1 WT vec(Xu) || / (JK–A)1/2 =

    = || vec(Xu) – P tu || / (JK–A)1/2  (8)

in which || · || indicates the Euclidean norm.

Therefore, a separate procedure called residual bilinearization can be implemented. 

This procedure is based on principal component analysis (PCA) to model the unexpected 

effects13,14, and is usually carried out by singular value decomposition (SVD). RBL aims at 

minimizing the norm of the residual vector eu, computed while fitting the sample data to the 

sum of the relevant contributions: 

vec(Xu) = P tu + vec[Bunx Gunx (Cunx)T] + eu (9)

in which Bunx and Cunx are matrices containing the first left and right eigenvectors of Ep, and 

Gunx is a diagonal matrix containing its singular values, as obtained from SVD analysis:

Bunx Gunx (Cunx)T = SVD(Ep)  (10)
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in which Ep is the JK matrix obtained after reshaping the JK1 ep vector of equation (8) and 

SVD indicates taking the first principal components.

During this procedure, P is kept constant at the calibration values, and tu is varied 

until || eu || is minimized. Then, the analyte concentrations are provided by equation (6), by 

introducing the final tu vector found by the RBL procedure. 

It should be noticed that for a number of interferences larger than one, the profiles 

provided by the SVD analysis of Ep unfortunately no longer resemble the true interferent 

profiles, due to the fact that the principal components are restricted to be orthonormal. 

The aim which guides the RBL procedure is the minimization of the residual error su 

to a level compatible with the noise present in the measured signals15, with su given by:

su = || eu || / [(J – NRBL)(K – NRBL) – A]1/2  (11)

in which NRBL is the number of RBL components and A the number of calibration PLS 

factors.

N-PLS/RBL

The N-PLS model is similar to the U-PLS method, but in this case the original 

second-order data matrices are not unfolded. The calibration step involves obtaining two sets 

of loadings Wj and Wk (of sizes JA and KA), as well as a vector of regression coefficients 

v (size A1)16,17. When no unexpected components occur in the test sample, equation (6) can 

be used for analyte prediction. However, in the presence of interferences, the sample scores 

are not suitable. The residuals of the N-PLS modeling of the test sample signal [sp, see 

equation (12)] will be abnormally large in comparison with the typical instrumental noise 

level:
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sp = || ep || / (JK–A)1/2 = || vec(Xu) – vec( u) || / (JK–A)1/2             (12)X̂

in which u is the sample data matrix (Xu) reconstructed by the N-PLS model.X̂

The situation is handled by minimizing the residuals computed while fitting the 

sample data to the sum of the relevant contributions:

Xu = reshape{tu[(Wj| |Wk)]}+ SVD ( u – Xu) + Eu             (13) X̂

in which 'reshape' indicates transforming a JK1 vector into a JK matrix, and | | is the 

Kathri-Rao operator17. During this process, the weight loadings Wj and Wk are kept constant 

at the calibration values, and tu is varied until the final RBL residual error su is minimized 

using a Gauss-Newton procedure, with su given by an equation similar to (11) [with eu = 

vec(Eu)].

Finally, an equation analogous to (6) retrieves the analyte concentrations by 

introducing the final tu vector found by RBL. 
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Fig. S1 PARAFAC time and photo-induced fluorescence emission loadings for the ISO (blue 
line), RIM (green line) and MONU (red line) when processing a typical sample of validation 
with the calibration set of samples. Loadings have been normalized to unit amplitude.
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Fig. S2 Profiles retrieved by MCR-ALS when processing a typical validation sample. (A) 
Spectral profiles. (B) Time profiles. In both cases blue, green, red and cyan lines indicate the 
signals from ISO, RIM, MONU and background.
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