Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2014

Supporting Information

for

Colorimetric determination of thiol compounds in serum based on Fe-MIL-88NH₂ metal-organic framework as peroxidase mimetics

Zhongwei Jiang, Yali Liu, Xiaoli Hu, Yuanfang Li*
Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest
University, Chongqing 400715, China. E-mail: liyf@swu.edu.cn, Tel: (+86) 23 68254659, Fax: (+86) 23 68367257.

Synthesis of Fe-MIL-88NH₂: Fe-MIL-88NH₂ was prepared according to the previous work of our group.¹ Briefly, 0.187g (0.692mmol) of FeCl₃•6H₂O and 0.126g (0.692mmol) of 2-aminoterephthalic acid were dissolved in 15mL of DMF, and 200µL acetic acid was added into this mixture. The mix solution was placed in an oil bath at 120 °C for 4 h to crystallize. After cooling to room temperature, the particles were isolated by centrifugation and washed with DMF and ethanol three times to remove the excess reactants, respectively. Finally, the Fe-MIL-88NH₂ was dried in a vacuum oven.

Additional figures

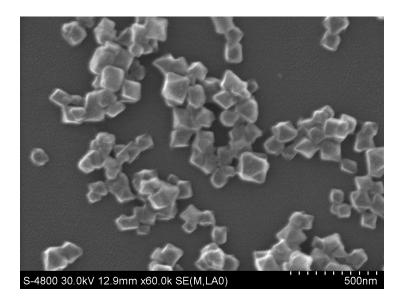


Fig.S1 SEM images of Fe-MIL-88NH₂ microcrystals

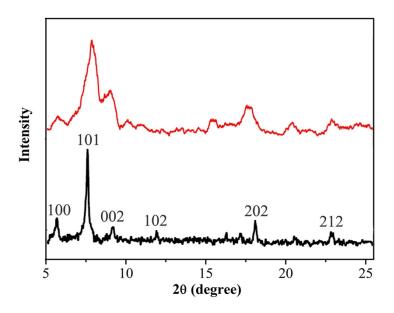


Fig.S2 Powder XRD patterns of Fe-MIL-88NH $_2$ (red), and the simulated XRD pattern of the reported Fe-MIL-88NH $_2$ (black).²

Table S1: The comparison of present method with other methods for thiols detection

Analyte	Detection method	Linear range	Detection limit	Reference
		/ μ M	/ μ M	
Homocysteine	Capillary Electrophoresis		0.5	
Glutathione		1.0-200.0	1	(3)
Cysteine			2	
	Near-infrared	400 -		
Cysteine	fluorescent	10.0-500.0	1.26	(4)
Cysteine	Fluorometry	16.5-33.0	1.0	(5)
Cysteine		1.0-80.0	0.39	
Homocysteine	Colorimetry	1.0-80.0	0.4	Present
Glutathione		1.0-100.0	0.45	method

References

- 1. Y. L. Liu, X. J. Zhao, X. X. Yang and Y. F. Li, Analyst, 2013, 138, 4526-4531.
- 2. M. Ma, H. Noei, B. Mienert, J. Niesel, E. Bill, M. Muhler, R. A. Fischer, Y. Wang, U. Schatzschneider and N. Metzler-Nolte, *Chem. Eur. J.*, 2013, **19**, 6785-6790.
- 3. S. H. K., J. W. K. and D. S. Chung, J. Pharm. Biomed. Anal., 1997, 15, 1435-1441.
- 4. Y. S. Guan, L. Y. Niu, Y. Z. Chen, L. Z. Wu, C. H. Tung and Q. Z. Yang, RSC Adv., 2014, 4, 8360-8364.
- 5. B. Liu, J. Wang, G. Zhang, R. Bai and Y. Pang, ACS Appl. Mater. Interfaces, 2014, 6, 4402-4407.