Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Quantitative Determination of Ru(bpy)₃²⁺ Cation in Photochemical Reactions by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

Nina Bergman,^a Anders Thapper,^b Stenbjörn Styring,^b Jonas Bergquist,^a and Denys

Shevchenko^{a*}

^a Analytical Chemistry, Department of Chemistry – Biomedical Centre, Uppsala University, P.O. Box 599, S-75124 Uppsala, Sweden

^b Molecular Biomimetics, Department of Chemistry – Ångström Laboratory, Uppsala University, P.O. Box 523, S-75120 Uppsala, Sweden

* email: denys.shevchenko@kemi.uu.se

Table of Contents

Sample/quencher mixture stability test	S-2
Isotopic patterns of the $Ru(bpy)_3^+$ and $Ru(phen)_3^+$ signals	S-3
Assay validation	S-3
LDI mass spectra of $Ru(bpy)_3^{2+}$ and $Ru(phen)_3^{2+}$	S-5
FlexAnalysis script and macro for automatic data processing	S-6

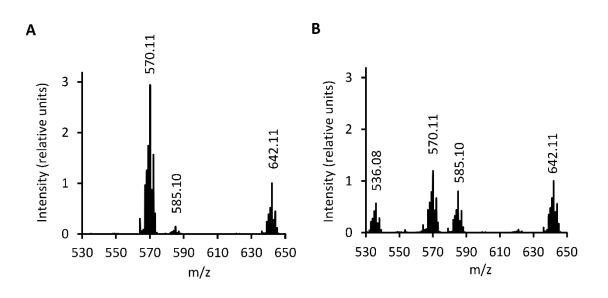


Figure S-1. MALDI spectra of the reaction mixture that was irradiated 10 minutes in the presence (A) and absence (B) of the quenching solution. Signal intensities were normalized to the peak at m/z 642.11 corresponding to the IS

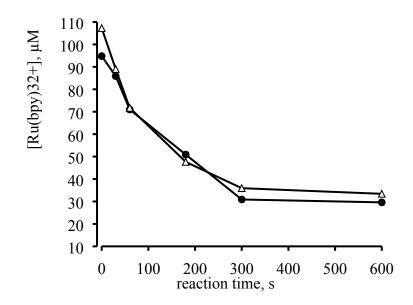


Figure S-2. Results of the MALDI MS analysis performed right after the photochemical reaction (•) and results of the MALDI MS analysis performed the next day on the same samples (Δ).

Isotopic patterns of the Ru(bpy)₃⁺ and Ru(phen)₃⁺ signals

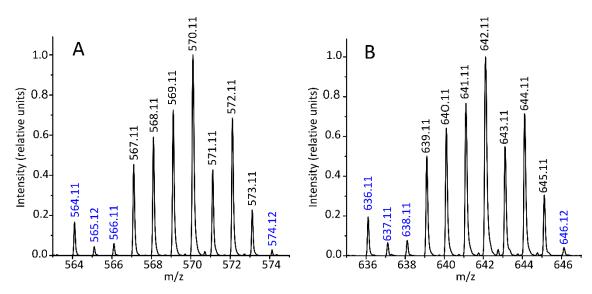


Figure S-3. Isotopic patterns of the $Ru(bpy)_{3}^{+}$ (**A**) and $Ru(phen)_{3}^{+}$ (**B**) signals. A ratio of the area under the most intensive $Ru(bpy)_{3}^{+}$ peak (m/z 570.11) to the area under the most intensive $Ru(phen)_{3}^{+}$ peak (m/z 642.11) was used as an analytical signal in this work. Additionally, within-day reproducibility, accuracy, and linearity were calculated, when a ratio of the area under the seven most intensive $Ru(bpy)_{3}^{+}$ peaks (m/z 567.11, 568.11, 569.11, 570.11, 571.11, 572.11, and 573.11) to the area under the seven most intensive $Ru(phen)_{3}^{+}$ peaks (m/z 639.11, 640.11, 641.11, 642.11, 643.11, 644.11, and 645.11) was used as an analytical signal (Tabel S-2). However, this "seven peaks" approach did not give any improvement and was not applied for other calculations in this work.

Assay validation

Table S-1. Within-day reproducibility, accuracy, and linearity using S_{570}/S_{642} as an analytical signal.

[Ru(bpy) ₃ ²⁺]	1		2		3		4		5		
(μM)	RSD	accuracy	RSD	accuracy	RSD	accuracy	RSD	accuracy	RSD	accuracy	
(μινι)	(%)	(% error)	(%)	(% error)	(%)	(% error)	(%)	(% error)	(%)	(% error)	
90	15.4	3.2	8.7	3.4	2.0	11.6	4.0	7.9	5.7	12.4	
50	2.5	2.8	8.5	4.4	6.4	2.3	7.4	12.3	4.8	6.3	
15	7.6	0.1	6.8	6.1	7.4	2.6	8.6	4.0	6.7	9.9	
R ²	0	0.990		0.968		0.997		0.992		0.972	

$[Ru(bpy)_3^{2+}]$	1		2		3		4		5		
(μM)	RSD	accuracy	RSD	accuracy	RSD	accuracy	RSD	accuracy	RSD	accuracy	
(μινι)	(%)	(% error)	(%)	(% error)	(%)	(% error)	(%)	(% error)	(%)	(% error)	
90	16.3	3.6	10.9	4.8	2.3	16.6	2.6	4.3	8.5	6.8	
50	3.9	5.6	9.0	6.4	5.8	6.7	8.7	15.3	4.6	6.4	
15	8.6	4.9	9.3	8.1	5.8	4.4	10.1	4.4	9.0	10.9	
R ²	0	0.990		0.955		0.993		0.988		0.952	

Table S-2. Within-day reproducibility, accuracy, and linearity using $(S_{567} + S_{568} + S_{569} + S_{570} + S_{571} + S_{572} + S_{573})/(S_{639} + S_{640} + S_{641} + S_{642} + S_{643} + S_{644} + S_{645})$ as an analytical signal.

Table S-3. Between-day reproducibility, accuracy, and linearity S_{570}/S_{642} as an analytical signal.

[Ru(bpy) ₃ ²⁺]	day 1		day 2		day 3		day 4		day 5		
(μM)	RSD (%)	accuracy (% error)									
90	7.9	14.5	5.6	9.0	15.4	3.2	6.4	8.7	3.4	3.3	
50	12.3	5.1	4.5	5.9	2.5	2.8	5.4	9.7	1.8	6.7	
15	9.3	1.4	5.2	4.6	7.6	0.1	6.6	1.7	4.4	13.7	
R ²	0	0.974		0.985		0.990		0.970		0.987	

LDI mass spectra of Ru(bpy)₃²⁺ and Ru(phen)₃²⁺

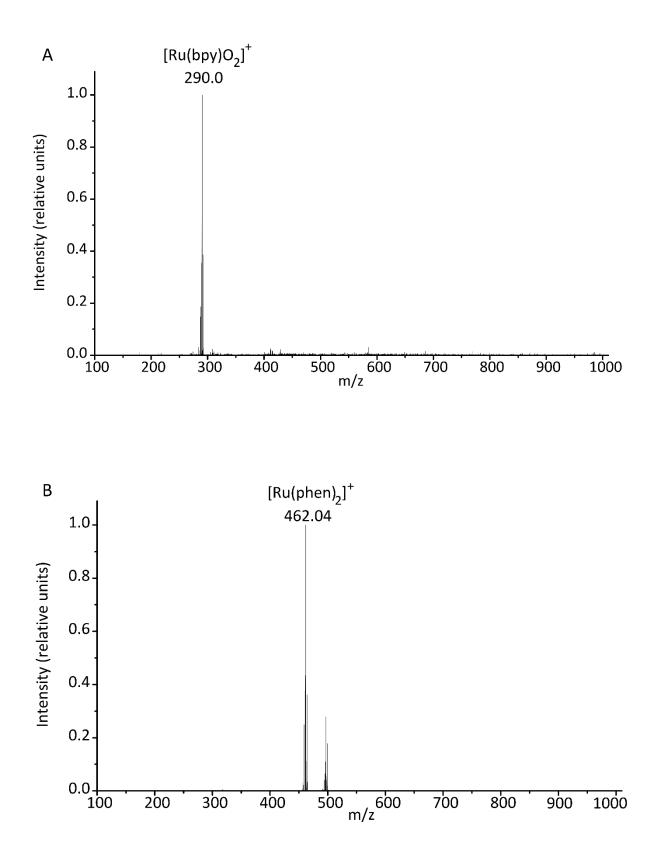


Figure S-4. LDI mass spectra of $Ru(bpy)_3^{2+}$ (**A**) and $Ru(phen)_3^{2+}$ (**B**). Absence of the molecular peaks at m/z 570 and 642 for $Ru(bpy)_3^{2+}$ and $Ru(phen)_3^{2+}$, respectively, indicates photolysis of these complex cations.

FlexAnalysis script and macro for automatic data processing

Option Explicit

A FlexAnalysis method script for an automatic finding of m/z 570.11 ($[Ru(bpy)_3]^+$) and 642.11 ($[Ru(phen)_3]^+$) peaks in the spectrum:

Sub Main UndoAllProcessing() *Dim dRange(1) As Double* dRange(0) = 569.8dRange(1) = 570.4{dRange(0) = 566.8} {dRange(1) = 573.4} *{for the "seven peaks" approach}* Dim ResultSpec As Spectrum Set ResultSpec = Spectra(1).Process(faFindPeaks, dRange) Dim tRange(1) As Double tRange(0) = 641.8tRange(1) = 642.4 { tRange(0) = 638.8} {tRange(1) = 645.8} *{for the "seven peaks" approach}* Dim aResultSpec As Spectrum Set aResultSpec = Spectra(1).Process(faFindPeaks, tRange)

ResultSpec.Enabled = True aResultSpec.Enabled = True

Save End Sub

This script is based on Bruker Daltonik GmbH PMF.FAMSMethod.¹

A FlexAnalysis macro that extracts the peak information (m/z and peak area) from the spectra and transfers it into an Excel sheet:

Attribute VB_Creatable = True Attribute VB_Exposed = False Attribute VB_GlobalNameSpace = False Attribute VB_Name = "MassListToExcel"

'#Uses "FATools.obm"

Option Explicit Option Base 1

Private aAnaSpec() As TAnaSpec Private nSpectra% Private Const sDelimiter\$ = vbTab

Property Get MenuItem\$ MenuItem = "File/Export/Mass List to Excel" End Property

Property Get EnableMenuItem As Boolean EnableMenuItem = Tools.GetSelectedAnaSpec(aAnaSpec) > 0 End Property Sub Main Execute End Sub

Sub Execute On Error GoTo Failed

MassListToExcel

Exit Sub

Failed: MsgBox Err.Description End Sub

Private Sub MassListToExcel ' Transfer the mass list to Excel nSpectra = Tools.GetSelectedAnaSpec(aAnaSpec) If nSpectra = 0 Then Err.Raise 1,,"No spectrum selected" End If

' Open Excel application Dim Excel As Object Set Excel = OpenExcel

Dim i% For i = 1 To nSpectra

Excel.Sheets(1).Activate

Dim sName\$ sName = Replace(aAnaSpec(i).oAnalysis.Name, "\", "_") sName = Replace(sName, " ", "_") sName = Left(sName, 31)

Dim Paster\$ Paster = "A" + CStr(3*i-2) + ":" + "A" + CStr(3*i-2)

```
{Paster = "A" + CStr(15*i-14) + ":" + "A" + CStr(15*i-14)}
{for the "seven peaks" approach}
```

CopyMassListToClipboard aAnaSpec(i).oAnalysis, aAnaSpec(i).oSpectrum

Excel.Range(Paster).Select Excel.Sheets(1).Paste

Next i

Clipboard "" End Sub

Private Function OpenExcel As Object Dim ExcelApp As Object On Error Resume Next Set ExcelApp = GetObject(,"Excel.Application") If ExcelApp = Null Then Set ExcelApp = CreateObject("Excel.Application") End If ExcelApp.Visible = True ExcelApp.Workbooks.Add Set OpenExcel = ExcelApp End Function

Private Sub CopyMassListToClipboard(oAnalysis As Analysis, oSpectrum As Spectrum)

Dim sName\$ sName =Replace(GetSpectrumName(oAnalysis, oSpectrum), "\1 1SRef Raw", "") Dim sCsv\$ sCsv =sName + vbTab

sCsv = sCsv + "m/z" +vbTab + "Area"+ vbCrLf

On Error Resume Next

```
Dim oPeakList As MassList
Set oPeakList = oSpectrum.MassList
```

Dim i%

For i = 1 To oPeakList.Count Dim oPeak As MassPeakInfo Dim sValue\$

Set oPeak = oPeakList(i)

```
sValue = ""

sValue = Replace(CStr(oPeak.MassToChargeValue), ",", ".")

sCsv = sCsv +sDelimiter + sValue + sDelimiter

sValue = ""

sValue = Replace(CStr(oPeak.Area), ",", ".")

sCsv = sCsv + sValue + vbCrLf

Next

Clipboard sCsv

End Sub
```

```
Private Function GetSpectrumName(oAnalysis As Analysis, oSpectrum As
Spectrum)
GetSpectrumName = oAnalysis.Name + " " + oSpectrum.Name
```

End Function

This script is based on Bruker Daltonik GmbH MassListToExcel.obm.¹

(1). Bruker Daltonik GmbH, FlexAnalysis Scripting Manual, Version 3.0, 2006.