Supporting Information for

Simultaneous analysis of coumarin derivatives in extracts of Radix angelicae pubescentis (Duhuo) by HPLC-DAD-ESI-MSⁿ technique

Bin Wang*, Xianhua Liu, An Zhou, Mei Meng, Qinglin Li*

Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key

Laboratory of R&D of Traditional Chinese Medicine, Anhui University of Traditional

Chinese Medicine, Hefei, Anhui 230038 (P. R. China)

E-mail:wangbin5654@163.com, qinglin_lee@hotmail.com

Table of contents

	page
Materials and instruments	S2
Standard solutions and sample preparation	S2
HPLC-DAD conditions	S2
HPLC-ESI-MS ⁿ Conditions	S2-S3
Table S1	S3
Figure S1	S3
Figure S2	S4
Table S2	S5-S6
Scheme S1	S 7
Figure S3	S 7
Scheme S2	S 8
Scheme S3	S 8
Scheme S4	S9
Figure S4	S9
Figure S5	S10
Figure S6	S11
Figure S7	S12
Figure S8	S13
Figure S9	S14
Figure S10	S15
Scheme S5	S16

Materials and instruments:Psoralen(3), osthole(21) and isoimperatorin(23) (purity>98%) were purchased from the National Institute for the China Institute for Control of Pharmaceutical and Biological Products (Beijing, China). Umbelliferone(1), xanthotoxin(5), bergapten(12) and columbianadin(22) (purity>98%) obtained from Tianjin Shilan Technology Co., Ltd (Tianjin, China).

HPLC grade methanol was procured from Merck (Darmstadt, Germany). Formic acid (analytical grade) was purchased from Shanghai Chemical Reagent Company (Shanghai, China). Water for HPLC analysis was purified by a Milli Q water purification system (Millipore Corporation, MA, USA). The analytical grade methanol, acetonitrile, petroleum ether and chloroform used for extraction was from Tianjin Reagent Company (Tianjin, China). PTFE membrane filter (0.45 µm) was purchased from Waters Co. (Milford, MA). The samples was weighed in electronic balance (BP211D, Sartorius, Germany).

Duhuo (Dried roots of Angelica pubescens Maxim. f. biserrata Shan et Yuan) was purchased from Hubei province of China and was authenticated by Professor Mei Meng. The voucher specimen (DH-13-1002) was deposited at Key Laboratory of Chinese Medicine Research and Development in Anhui Province.

Standard solutions and sample preparation: Duhuo was ground into powder, passed through a 60 mesh sieve and dried at 50 °C for 6 h. An aliquot of 0.5 g of the dried sample was ultrasonically extracted using 10 ml of chloroform-methanol (1:1, v/v) for 30 min. The extractive of Duhuo was filtered and hence the sample solution was obtained. A stock solution containing seven standards (umbelliferone (1), psoralen (3), xanthotoxin (5), bergapten (12), osthole (21), columbianadin (22) and isoimperatorin (23)) was prepared in methanol and diluted with methanol to an appropriate concentration. All solutions were stored in the refrigerator at 4 °C and were filtered through a 0.45 µm syringe filter before use.

HPLC-DAD conditions: The HPLC system (Finnigan-Thermo Fisher Electron Corporation, San Jose, CA, USA) was equipped with a quaternary pump (Model Finnigan Surveyor Plus), an autosampler (Model Finnigan Surveyor Plus with 200-vial capacity sample) including a column oven controller, which was connected in a photo diode array detector (DAD) (Finnigan Surveyor Plus) quantitative analyzing and UV spectra acquisition. The chromatographic separation was performed on a C₁₈ultimate XB-C₁₈ column (5 μ m, ø 4.6 mm × 250 mm, Welch, USA). The mobile phase was methanol (A) and water with 0.1% formic acid (B). A gradient program was as follows: 0-5 min, 35% A; 6-20 min, 49% A; 25-35 min, 65% A; 40-50 min, 90% A. The beginning gradient was held for 10 min. The flow rate was 1.0 mL/min. The injection volume was 10 μ L and the column temperature was maintained at 25 °C. The UV spectra was recorded from 200 nm to 400 nm. The detection wavelength was set at 246 nm, 274 nm and 320 nm. The chromatographic data were recorded and processed with an Xcalibur 2.0 chemstation workstation (Finnigan, San Jose, USA).

HPLC-ESI-MSⁿ Conditions:Identification of Duhuo extracts was confirmed by HPLC online coupled with the electrospray ionization (ESI) source of an ion trap mass spectrometer (MS)(Finnigan LCQ Advantage, San Jose, CA, USA). The chromatographic conditions were the same as HPLC-DAD analysis described above, by solvent splitting, 0.3 mL/min portion of the column effluent was delivered into the ion source of mass spectrometry. A ion-trap mass spectrometer equipped with a electrospray ionization source and Xcalibur software version 2.0 was used for data acquisition and processing. Optimal operating parameters of the ESI interface and quadropole/ion trap were found by infusing seven standard solutions above, the mobile phase at 300 μ L/min using a Finnigan syringe pump. Ultrahigh pure helium (He) was used as the collision gas and high purity nitrogen (N₂) as the nebulizing gas. The optimum conditions of the interface were applied as follows: capillary temperature of 300 °C; sheath gas pressure and auxiliary gas pressure of 35 arb and 10 arb; spray, capillary, and tube lens voltages of 4.5 kV, 14V and 45V. For full scan

MS analysis, the total analysis time was 50 min. The mass spectrometer was operated with a scan range of m/z 150 to m/z 800 in the positive ion mode. MS² and MSⁿ (n=3-4) analyses were performed by the collision of the precursor ions with helium gas. The energy values of collision-induce dissociation (CID) were automatically selected.

Extraction solvent	Ratio of Duhuo extract to sample	Peak area of osthole
	$(mg \cdot g^{-1})$	(%)
Petroleum ether	53.112	5.865
Chloroform	103.564	11.356
Methanol	129.689	12.587
Acetonitrile	117.856	9.467
Chloroform-methanol (1:1, v/v)	152.367	16.356
Chloroform-acetonitrile (1:1, v/v)	138.679	12.956

Table S1. The extraction result of Duhuo samples with different solvents for 30 min

Figure S1. The HPLC chromatogram of seven standards

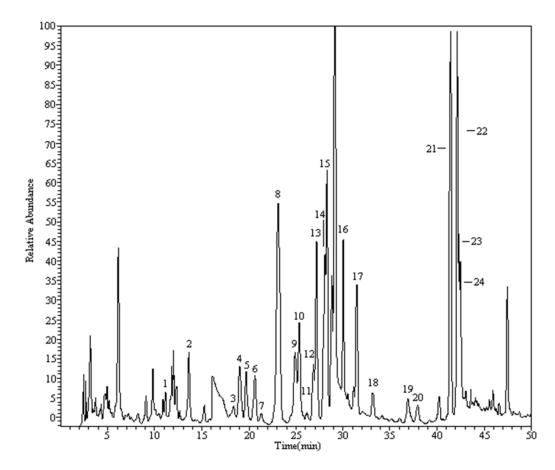
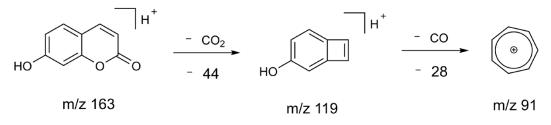
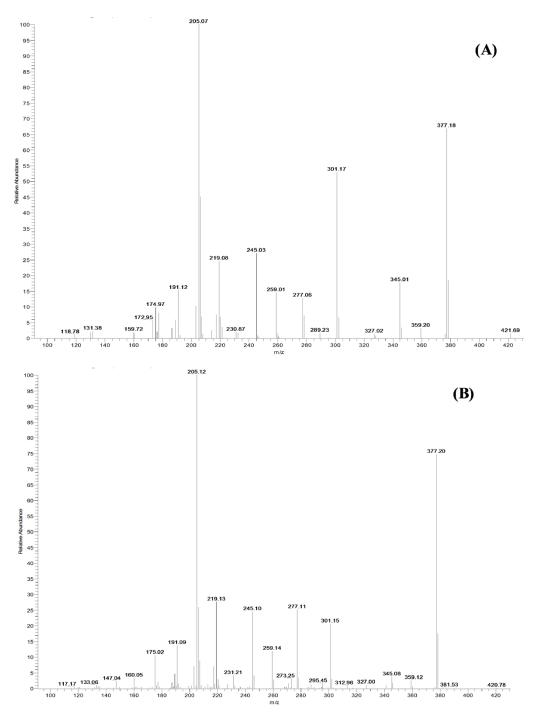
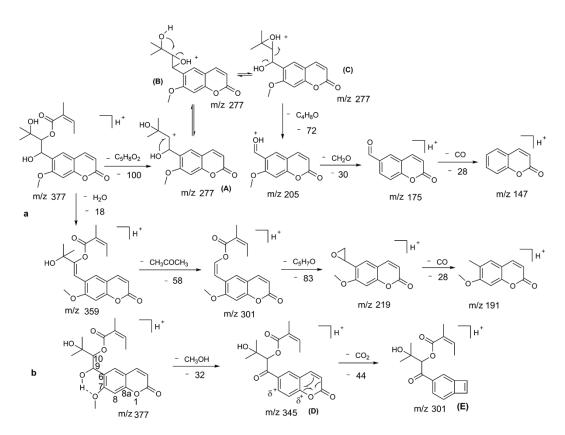
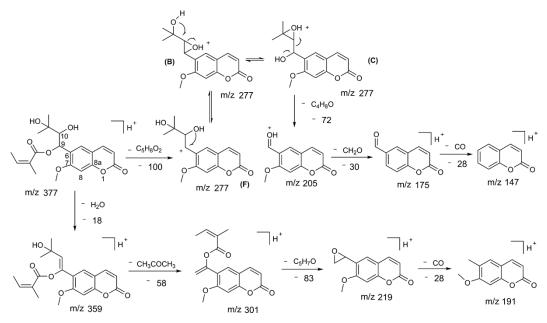



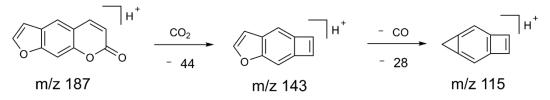
Figure S2. HPLC-DAD chromatogram of simultaneous separation of Duhuo extracts

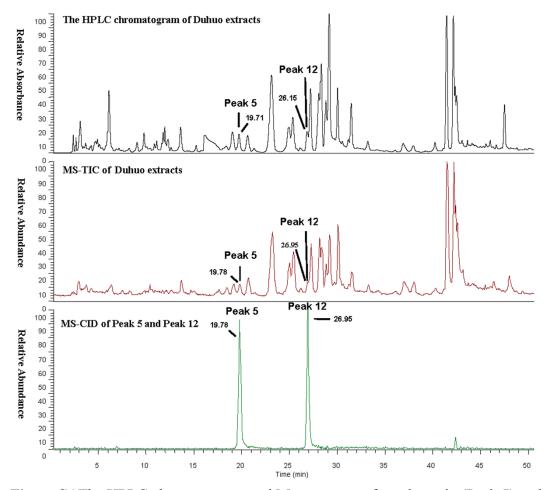

Table S2.HPLC-DAD-ESI-MSⁿ data and identification of 24 coumarin constituents in

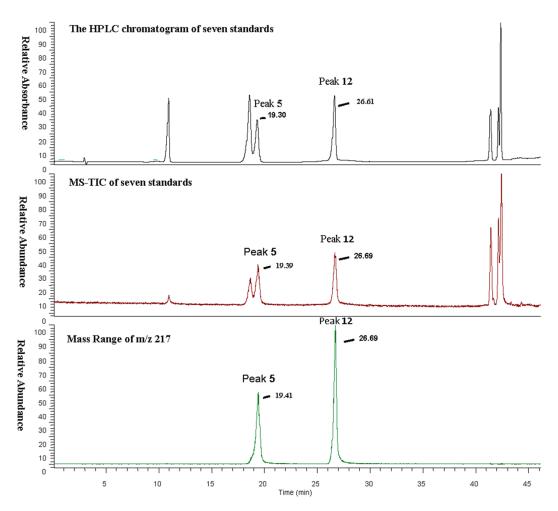
			Duhuo extracts		
Doak	t _R (min)	(+)ESI-MS	HPLC-ESI(+)-MS ⁿ experiment	HPLC-DAD	Identification
реак t	ι _R (11111)	(m/z)	m/z(% base peak)	$\lambda_{\max}(nm)$	Identification
1 11.21	11 71	163 [M+H]+	MS ² [163]:119(100),91(85)	204,218,	Umbelliferone
	11.21	1 180 [M+NH ₄] ⁺	MS ³ [119]:91(100)	327	Ombeimerone
			MS ² [409]:247 (100)	252 262	
2	13.67	409[M+H] ⁺	MS ³ [247]:229(93),201(30),187(38),175(100)	253,262,	β-D-glucosyl- columbianetin
		MS4[175]:147(100),119(36)	331	coumplaneum	
3 19.01	10.01	107[14.11]+	MS ² [187]:143(100)	210,247,	Psoralen
	19.01	187[M+H]+	MS ³ [143]:115(100)	301,330	PSUIdiell
			MS ² [247]:229(100),175(95)		
			MS ³ [175]:147(100)	202 252	
4	19.21	247[M+H]+	MS4[147]:119(100),103(86)	202,253,	Columbianetin
			MS ³ [229]:187(100),175(40)	261,331	
			MS4[201]:173(100),159(10)		
			MS ² [217]:202(100),189(23),185 (40)	203,220,	
5	19.78	217[M+H]+	MS ³ [202]:174(100)		Xanthotoxin
			MS ⁴ [174]:146 (100),117(38)	250,304	
			MS ² [377]:345(21),301(58),277(17),205(100)		
		377[M+H] ⁺ 359[M+H-H ₂ O] ⁺	MS ³ [205]:175(100) MS ⁴ [175]:147(100)	205 224	
6	20.72		MS ² [359]:301(100),219(40)	205,224,	Angelol A
			MS ³ [301]:219(100)	332	
			MS ⁴ [219]:219(100),191(35)		
			MS ² [305]:203(100)MS ³ [203]:175(51),	202.240	Overnousedanin
7	21.38	1.38 305[M+H] ⁺	159(100),131(60)	202,249,	Oxypeucedanin
			MS ⁴ [159]:131(100)	319	hydrate
		377[M+H] ⁺ 23.21 359[M+H-H ₂ O] ⁺	MS ² [377]:345(7),301(22),277(28),205(100)		
			MS ³ [205]:175(100) MS ⁴ [175]:147(100)	207,223,	
8	23.21		MS ² [359]:301(100),219(43)	332	Isoangelol
			MS ³ [301]:219(100)	552	
			MS ⁴ [219]:219(100),191(50)		
		379[M+H] ⁺ 25.02 361[M+H-H ₂ O] ⁺	MS ² [379]:347(5),303(15),277(36),205(67)		
			MS ³ [205]:175(100) MS ⁴ [175]:147(100)	204,223, 332	
9	25.02		MS ² [361]:303(100),219(18)		Anpubesol
			MS ³ [303]:219(100)	552	
			MS ⁴ [219]:219(100),191(55)		
		379[M+H]⁺ 25.44 361[M+H-H₂O]⁺	MS ² [379]:347(8),303(23),277(13),205(70)		
			MS ³ [205]:175(100) MS ⁴ [175]:147(100)	202 222	
10 2	25.44		MS ² [361]:303(100),219(20)	203,223, 331	Angelol C
			MS ³ [303]:219(100)	JJI	
			MS ⁴ [219]:219(100),191(45)		
11	25 δ 1	25.81 247[M+H] ⁺	MS ² [247]:232(100) MS ³ [232]:217(100)	201,288,	Isopimpinellin
11	23.01		MS ⁴ [217]:189(100),161(15)	327	Jophnphiemi
12	26.95	217[M+H] ⁺	MS ² [217]:202(100) MS ³ [202]:174(100)	201,223,	Bergapten

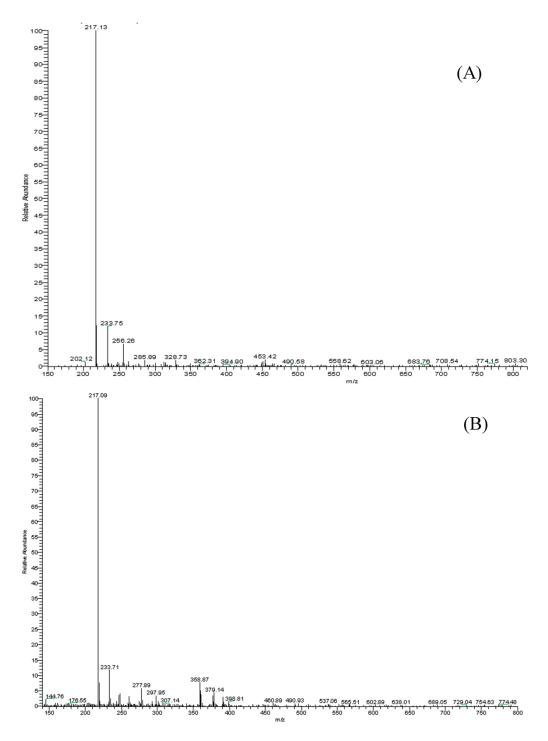

			MS ⁴ [174]:146(100)	270,320	
	MS ² [359]:301(100),219(42)		Angelol		
13	13 27.29 359[M+H] ⁺	359[M+H] ⁺	MS ³ [301]:273(30),219(100)	225,330	Adehydration
		MS4[219]:219(100),191(30)		Adenyuration	
			MS ² [361]:303(100),219(21)	210 224	Appubacal
14	28.14	361[M+H]+	MS ³ [303]:219(100)	210,224,	Anpubesol
		MS ⁴ [219]:219(100),191(52)	257,329	dehydration	
			MS ² [361]:303(100),219(23)	200 225	A
15	28.35	361[M+H]+	MS ³ [303]:219(100)	209,225,	Angelol
		MS ⁴ [219]:219(100),191(50)	329	Cdehydration	
			MS ² [289]:229(100)MS ³ [229]:187(100),		
16	30.09	289[M+H] ⁺	175(18)	253,262,	Columbianetin
311[M+	311[M+Na] ⁺	MS4[187]:159(100),143(27),131(40)	330	acetate	
			MS ² [231]:175 (88),149(80),135(100)		
			MS ³ [175]:147(100)		
17	31.56	231[M+H]+	MS ³ [149]:131(100),121(63)	201,249	Osthenol
01.00 L 01[/////		MS ³ [135]:107(100)			
			MS ⁴ [147]:119(84),103(100)		
			MS ² [229]:187(100),175(55)		
18	33.25	229[M+H]+	MS ³ [187]:159(100),143(55)	202,331	Angenomalin
10 00.20 220[MS ⁴ [159]:131(100)		U	
			MS ² [303]:229(100)		
19	36.98	303[M+H] ⁺	MS ³ [229]:187(100),175(28)	202,331	Columbianetin
-	325[M+Na] ⁺	325[M+Na] ⁺	MS ⁴ [187]:159(100),143(57)	- ,	propionate
			MS ² [359]:301(100),259(18),219(45)		
20	20 37.89 359[N	359[M+H] ⁺	MS ³ [301]:273,(20),219(100)	225,330	Isoangelol
20 37.89	555[[[[11]]	MS ⁴ [219]:219(100),191(45)	220,000	dehydration	
			$MS^{2}[245]:189(100)$		
21	41.45	245[M+H] ⁺	MS ³ [189]:161(100),159(76)	207,252,	Osthole
21 41.45	41.45	.45 245[101+11]	MS ⁴ [161]:133(100)	259,326	Ostriole
			MS ² [329]:229(100)		
32 22 42.20	329[M+H] ⁺	MS ³ [229]:225(100) MS ³ [229]:201(43),187(100),175(34)	206,263,	Columbianadin	
22	42.20	351[M+Na] ⁺	MS ⁴ [187]:159(100),143(42),131(35)	330	Columbianaum
			$MS^{2}[271]:203(100)$		
23	3 42.48 271[N	.48 271[M+H] ⁺	$MS^{2}[271].203(100)$ $MS^{3}[203]:175(42),159(100)$	205,252,	Isoimperatorin
23 42	42.40	271[[0]+[1]		261,313	isoimperatorin
			MS ⁴ [159]:131(100)		
24 42.61	17 61	331[M+H] ⁺	MS ² [331]:229(100)	204,252,	Dihydrocolumbi
	51 353[M+Na]⁺	MS ³ [229]:201(35),187(100),175(10)	262,330	anadin	
			MS ⁴ [187]:159(100),143(35),131(32)		

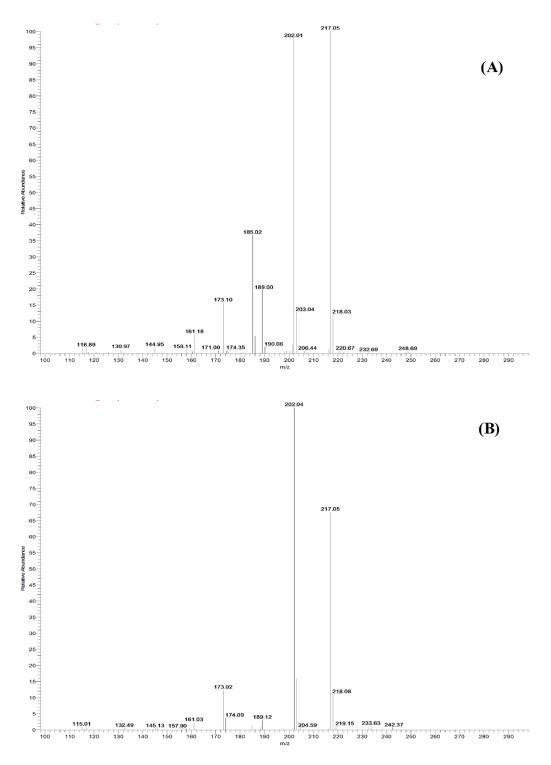

Scheme S1. Proposed MS fragmentation pathway for the $[M+H]^+$ ion of Peak 1

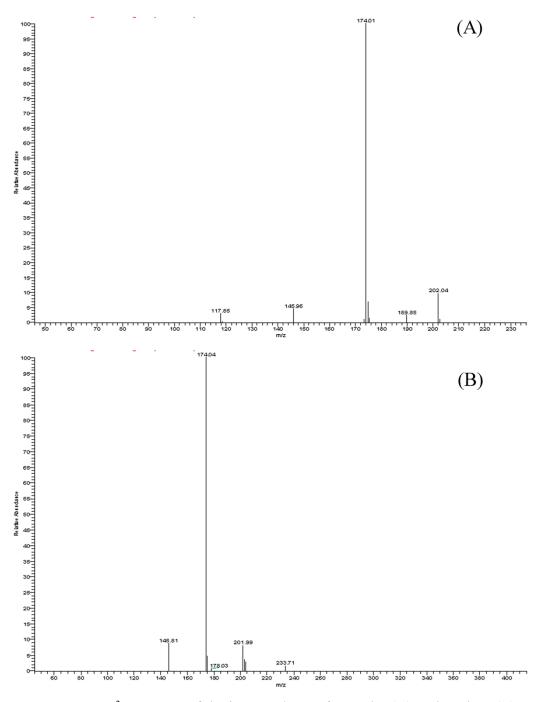

Figure S3. MS² spectrum of the ion at m/z 377 for Peak 6 (A) and Peak 8 (B)

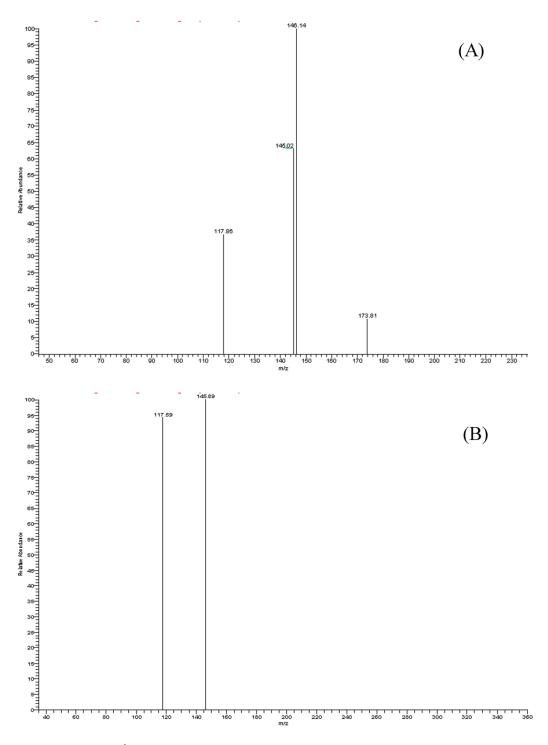

Scheme S2. Proposed MS fragmentation pathway for the [M+H]⁺ ion of Peak 6

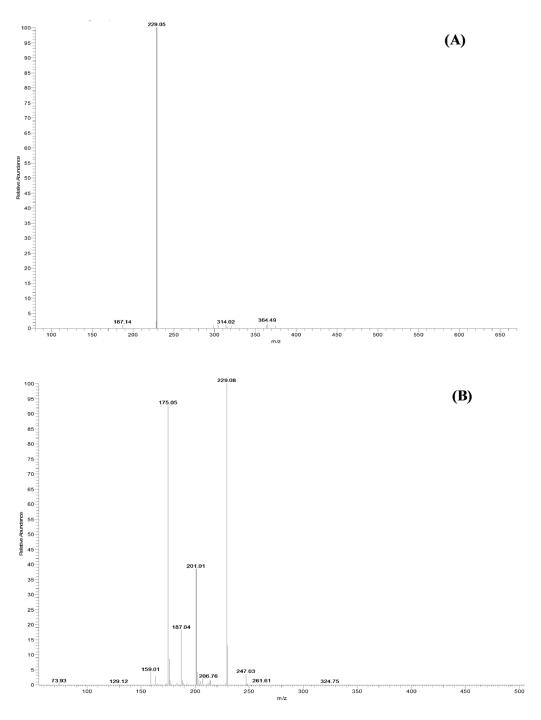

Scheme S3. Proposed MS fragmentation pathway for the $[M+H]^+$ ion of Peak 8

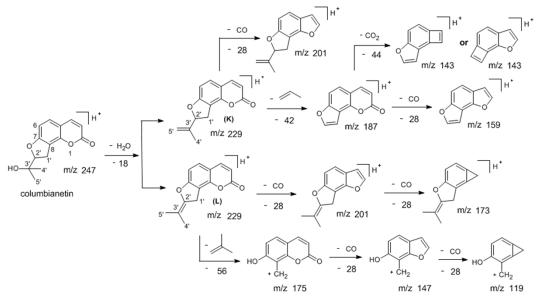

Scheme S4. Proposed MS fragmentation pathway for the [M+H]⁺ ion of Peak **3**


Figure S4. The HPLC chromatogram and Mass spectra of xanthotoxin (Peak 5) and bergapten (Peak 12) in sample


Figure S5. The HPLC chromatogram and Mass spectra of xanthotoxin (Peak 5) and bergapten (Peak 12) in standards


Figure S6.MS spectrum of the ion at m/z 217 for Peak 5(A) and Peak 12(B).


Figure S7.MS² spectrum of the ion at m/z 217 for Peak **5**(A) and Peak **12**(B).


Figure S8.MS³ spectrum of the ion at m/z 217 for Peak **5**(A) and Peak **12**(B).

*Figure S*⁹.MS⁴ spectrum of the ion at m/z 217 for Peak **5**(A) and Peak **12**(B).

Figure S10. MS² spectrum of the ion at m/z 329 for Peak **23** (A) and the ion at m/z 247 for Peak **4** (B)

Scheme S5. Proposed MS fragmentation pathway for the [M+H]⁺ ion of Peak 4