1. Solution preparation

Mixed amino-acid standard work solutions for hCG hydrolysis quantification: A mixed label-free amino-acid standard solution (MLFS) contained 102 μ L phenylalanine stock solutions, 278 μ L proline stock solutions, 191 μ L value stock solution and 9429 μ L water. A mixed isotope labeled solution (MILS) contained 102 μ L ¹³C₉-L-phenylalanine stock solution, 278 μ L ¹³C₅ L-proline stock solution, 278 μ L ¹³C₅-L-value stock solution and 9342 μ L water. A lower level standard solution contained 123 μ L MLFS and 98 μ L MILS. A higher level standard solution contained 193 μ L MLFS and 100 μ L MILS.

Mixed amino-acids standard work solutions for signature peptide quantification: A MLFS contained 178 μ L leucine stock solution, 100 μ L proline stock solution, 207 μ L valine stock solution and 9515 μ L water. MILS contained 178 μ L d₁₀-Leucine stock solution, 103 μ L ¹³C₅-proline stock solution, ¹³C₅-valine stock solution and 9264 μ L water. A lower level standard solutions contained 124 μ L MLFS and 200 μ L MILS. A higher level standard solution contained 193 μ L MLFS and 200 μ L MILS. Peptide work solutions were prepared as followed with accurate weighing: A label free solution (LFS) contained 750 μ L VR stock solution and 9250 μ L water. An isotope labeled solution (ILS) contained 750 μ L d₁₀-VR stock solution and 9250 μ L water. A lower level standard solution contained 125 μ L LFS and 200 μ L ILS. A higher level standard solution contained 231 μ L LFS and 200 μ L ILS.

	Sensitivity factor	Direct uncertaint y	Uncertainty component
Weighing of leucine	2.47×10-5	5.77×10 ⁻⁷	1.43×10 ⁻¹¹
Weighing of water for leucine stock solution preparation	-2.45×10 ⁻⁸	5.77×10 ⁻⁶	-1.41×10 ⁻¹³
Weighing of leucine stock solution	1.31×10-6	5.77×10-6	7.56×10 ⁻¹²
The sample area ratio of leucine to leucine-d ₁₀	4.25×10-4	5.77×10-3	2.45×10-6
The standard area ratio of leucine to leucine-d ₁₀	-3.98×10 ⁻⁴	5.77×10 ⁻³	-2.30×10-6
Leucine purity	2.49×10-4	4.62×10-3	1.15×10-6
The molecular weight of leucine	-1.89×10-6	5.77×10-3	-1.09×10 ⁻⁸
The number of leucine in peptide	-8.27×10-5	0.00	0
Weighing of proline	3.04×10 ⁻⁵	5.77×10 ⁻⁷	1.75×10 ⁻¹¹
Weighing of water for proline stock solution preparation	-3.14×10 ⁻⁸	5.77×10 ⁻⁶	-1.81×10 ⁻¹³
Weighing of proline stock solution	3.03×10 ⁻⁶	5.77×10-6	1.75×10 ⁻¹¹
The sample area ratio of proline to proline- ${}^{13}C_5$	4.32×10 ⁻⁴	5.77×10-3	2.49×10-6

2. Supplementary Tables

Table 8 Uncertainty budget of signature peptide value assignment

The standard area ratio of proline to proline- ¹³ C ₅	-5.07×10-4	5.77×10-3	-2.92×10-6
proline purity	3.13×10-4	4.62×10-3	1.45×10 ⁻⁶
The molecular weight of proline	-2.71×10 ⁻⁶	5.77×10 ⁻³	-1.25×10 ⁻⁸
The number of proline in peptide	-1.56×10-4	0.00	0
Weighing of valine	2.41×10 ⁻⁵	5.77×10 ⁻⁷	1.39×10 ⁻¹¹
Weighing of water for valine stock solution preparation	-2.40×10 ⁻⁸	5.77×10 ⁻⁶	-1.38×10 ⁻¹³
Weighing of valine stock solution	1.09×10 ⁻⁶	5.77×10-6	6.29×10 ⁻¹²
The sample area ratio of valine to valine- ¹³ C ₅	4.59×10-4	5.77×10-3	2.65×10-10
The standard area ratio of valine to valine- ¹³ C ₅	-4.28×10-4	5.77×10 ⁻³	-2.47×10 ⁻⁶
Valine purity	2.45×10-4	4.62×10 ⁻³	1.13×10 ⁻⁶
The molecular weight of valine	-2.08×10 ⁻⁶	5.77×10 ⁻³	-1.20×10 ⁻⁸
The number of valine in peptide	-6.08×10-6	0.00	0
Weighing of water for standard mixed amino acids	-8.02×10 ⁻⁸	5.77×10 ⁻⁶	-4.63×10 ⁻¹³
Weighing of mixed standard amino acids	6.47×10 ⁻⁶	5.77×10-6	3.73×10 ⁻¹¹
Weighing of water for standard mixed label amino acids	-3.99×10 ⁻⁵	5.77×10 ⁻⁶	-2.30×10 ⁻¹⁰
Weighing of the peptide sample solution	-8.04×10 ⁻⁵	5.77×10-6	-4.64×10 ⁻¹⁰
Weighing of standard mixed label amino acids to peptide sample	5.20×10 ⁻⁶	5.77×10 ⁻⁶	3.00×10 ⁻¹¹
The molecular weight of peptide	4.29×10-7	5.77×10-5	2.48×10 ⁻¹¹
Weighing of peptide (solid)	-5.01×10 ⁻¹	5.77×10-7	-2.89×10 ⁻⁷
Weighing of water for peptide (solid)	5.11×10-4	5.77×10-6	2.95×10-9
Table 9 Uncertainty budget of hCG value ass	ignment (hCG e	enzymatic dige	stion)
	Sensitivity factor	Direct uncertainty	Uncertainty component
Weighing of peptide	4.74×10-4	5.77×10-7	2.73×10 ⁻¹⁰
Weighing of water for peptide stock solution preparation	-4.79×10 ⁻⁸	5.77×10 ⁻⁶	-2.76×10 ⁻¹³
Weighing of peptide stock solution	4.46×10 ⁻⁷	5.77×10 ⁻⁶	2.57×10 ⁻¹²
The sample area ratio of peptide to peptide- $(d_{10}-Leu)$	10.00×10 ⁻⁵	5.77×10 ⁻³	5.77×10 ⁻⁷
The standard area ratio of peptide to peptide- $(d_{10}-Leu)$	-1.48×10 ⁻⁴	5.77×10-3	-8.54×10-7
Peptide purity	4.38×10-4	4.62×10-3	2.02×10-6
The molecular weight of peptide	-1.87×10-7	5.77×10-3	-1.08×10-9
The number of peptide in hCG	-3.60×10 ⁻⁴	0.00	0
Weighing of water for standard mixed label peptides	-3.46×10 ⁻⁸	5.77×10 ⁻⁶	-2.00×10 ⁻¹³
Weighing of mixed signature peptides	0.07 106		4 6 6 4 9 11
, eighning et miner signature peptides	2.87×10-6	5.77×10-6	1.66×10 ⁻¹¹

Weighing of the hCG sample solution	-1.81×10-6	5.77×10-6	-1.04×10-11
Weighing of standard mixed peptides to hCG sample	-9.28×10 ⁻⁶	5.77×10 ⁻⁶	-5.35×10 ⁻¹¹
Weighing of standard mixed label peptides to hCG sample	1.91×10 ⁻⁶	5.77×10 ⁻⁶	1.10×10 ⁻¹¹
The molecular weight of hCG	1.40×10-8	5.77×10-5	8.08×10 ⁻¹³
Weighing of hCG (solid)	-5.01×10-1	5.77×10-7	-2.89×10 ⁻⁷
Weighing of water for hCG (solid)	5.11×10-4	5.77×10-6	2.95×10-9