Electronic Supplementary Information for

Novel electrochemical sugar recognition system using ruthenium complex and phenylboronic acid assembled on gold nanoparticles

Akira Endo,* Masamitsu Kimura, Takeshi Hashimoto and Takashi Hayashita

Synthesis of the complexes and ligands

Hacac- $\left(\mathrm{CH}_{2}\right)_{8}$-I: Hacac ($6.8 \mathrm{~g}, 0.068 \mathrm{~mol}$), diiodoctane ($25 \mathrm{~g}, 0.068 \mathrm{~mol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(9.4 \mathrm{~g}, 0.17 \mathrm{~mol})$ were dissolved in $100 \mathrm{~cm}^{3}$ 10 of acetone dried over 3A molecular sieves and refluxed for 72 h . Evaporation of the solvent provided a yellow oily substance. Yield: $63.2 \% ~(14.5 \mathrm{~g}, 0.043 \mathrm{~mol})$ EI-MS: $m / z=338$.
$\left[\mathrm{Ru}^{\text {III }}(\mathrm{acac})_{2}\left(\mathrm{acac}-\left(\mathrm{CH}_{2}\right)_{8} \mathrm{I}\right)\right]:\left[\mathrm{Ru}{ }^{\text {II }}(\mathrm{acac})_{2}(\mathrm{AN})_{2}\right](1.00 \mathrm{~g}, 2.62 \mathrm{mmol})$ and Hacac- $\left(\mathrm{CH}_{2}\right)_{8}-\mathrm{I}(2.47 \mathrm{~g}, 7.30 \mathrm{mmol})$ were dissolved in 100 cm^{3} of ethanol. The solution was refluxed for 5 h . Then, additional Hacac- $\left(\mathrm{CH}_{2}\right)_{8}-\mathrm{I}(0.83 \mathrm{~g}, 2.45 \mathrm{mmol})$ was added and reflux was continued for 18.5 h . The crude product was purified by column chromatography (silica gel/BZ:AN $=20: 1 \mathrm{v} / \mathrm{v} \%$). The second fraction 15 was separated and dark red crystals were obtained by evaporation of the solvent. Yield: $9.77 \%(0.163 \mathrm{~g}, 0.256 \mathrm{mmol})$ FAB-MS: $\mathrm{m} / \mathrm{z}=$ $636.5\left(\mathrm{M}^{+}\right)$.
$\left[\mathrm{Ru}{ }^{\text {III }}(\mathrm{acac})_{2}\left(\mathrm{acac}-\left(\mathrm{CH}_{2}\right)_{8} \mathrm{SH}\right)\right]:\left[\mathrm{Ru}{ }^{\text {III }}(\mathrm{acac})_{2}\left(\mathrm{acac}-\left(\mathrm{CH}_{2}\right)_{8} \mathrm{I}\right)\right](0.163 \mathrm{~g}, 0.256 \mathrm{mmol})$ was dissolved in $20 \mathrm{~cm}^{3}$ of acetonitrile and then $0.058 \mathrm{~g}(0.762 \mathrm{mmol})$ of thiourea was added. The solution was refluxed for 18 h . The crude product obtained by evaporation of the solvent was dissolved in a small amount of acetonitrile. Then, $20 \mathrm{~cm}^{3}$ of water and $\mathrm{ca} .5 \mathrm{~cm}^{3}$ of $0.16 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}$ solution were added
20 to the solution and the mixture was refluxed for 2 h . The crude product was purified by column chromatography (silica gel/hexane:ethyl acetate $=1: 2 \mathrm{v} / \mathrm{v} \%$). The first fraction was separated and again purified by column chromatography (silica gel/hexane:ethyl acetate $=1: 1$ $\mathrm{v} / \mathrm{v} \%)$. Dark red crystals were obtained by evaporation of the solvent. Yield: $3.7 \%\left(5.15 \mathrm{mg}, 9.45 \times 10^{-6} \mathrm{~mol}\right)$ FAB-MS: $\mathrm{m} / \mathrm{z}=545$.

Reagents

25 Sugars (D-fructose, D-glucose, and D-galactose) were purchased from Wako Pure Chemical Industries Ltd. For synthetic experiments, commercially available reagent grade solvents were used and dehydrated by molecular sieves before use. For the preparation of GNPs, $\mathrm{HAuCl}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ was used from Wako Pure Chemical Industries Ltd.

Fig. S1 A) UV-vis spectra of GNPs modified with various ratios of $\mathbf{R u 0}$ and $\mathbf{B 0}$. B) Time dependence of $\Delta\left(\mathrm{A}_{620} / \mathrm{A}_{520}\right)$ of $\mathbf{G N P}$ before modification with $\mathbf{R u 0}$ and $\mathbf{B 0}$ at $\mathbf{R u 0}: \mathbf{B 0}=10: 0,9: 1,8: 2,7: 3,6: 4,5: 5,4: 6,3: 7,2: 8,1: 9,0: 10$.

Fig. S2 DPV of Ru8/B10/GNP complexes in $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaClO}_{4}-\left(\mathrm{H}_{2} \mathrm{O}: \mathrm{EtOH}=3: 1\right.$) at glassy carbon electrode $(\phi=3 \mathrm{~mm})$ under Ar with addition of D-fructose (A) and D-galactose (B). [D-fructose]: A; $0,0.5,1.0,2.5,5.0,7.5,10,25,50 \mu \mathrm{~mol} \mathrm{dm}{ }^{-3}, \mathrm{~B} ; 0$, $0.5,1.0,2.5,5.0,7.5,10,25,50,100,150 \mu \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S3 DPV of Ru0/B0/GNP complexes in $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaClO}_{4}-\left(\mathrm{H}_{2} \mathrm{O}: \mathrm{EtOH}=3: 1\right.$) at a glassy carbon electrode ($\phi=3 \mathrm{~mm}$) under Ar upon the addition of D-fructose (A) or D-galactose (B). [D-fructose]: A; $0,0.5,1.0,2.5,5.0,7.5,10,25,50,100,150,250,500$ $\mu \mathrm{mol} \mathrm{dm}{ }^{-3}, \mathrm{~B} ; 0,0.5,1.0,2.5,5.0,7.5,10,25,50,100,150,250,500 \mu \mathrm{~mol} \mathrm{dm}^{-3}$.

5

10

15

Fig. S4 DPV of Ru0/B10/GNP complexes in $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaClO}_{4}-\left(\mathrm{H}_{2} \mathrm{O}: \mathrm{EtOH}=3: 1\right.$) at a glassy carbon electrode ($\phi=3 \mathrm{~mm}$) under Ar upon the addition of D-fructose (A) or D-galactose (B). [D-fructose]: A; 0, 0.5, 1.0, 2.5, 5.0, 7.5, 10, 25, 50, 100, 150, 250, 500, $750 \mu \mathrm{~mol} \mathrm{dm}^{-3}, \mathrm{~B} ; 0,0.5,1.0,2.5,5.0,7.5,10,25,50,100 \mu \mathrm{~mol} \mathrm{dm}{ }^{-3}$.

${ }^{60}$ Fig. S5 DPV of Ru8/B0/GNP complexes in $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaClO}_{4}-\left(\mathrm{H}_{2} \mathrm{O}: \mathrm{EtOH}=3: 1\right.$) at a glassy carbon electrode ($\phi=3 \mathrm{~mm}$) under Ar following the addition of D-fructose (A) or D-galactose (B). [D-fructose]: A; $0,0.5,1.0,2.5,5.0,7.5,10,25,50,100,150,250$ $\mu \mathrm{mol} \mathrm{dm}{ }^{-3}$, B; $0,0.5,1.0,2.5,5.0,7.5,10,25,50,100,150,250 \mu \mathrm{~mol} \mathrm{dm}^{-3}$.

5

10

15

20

65

Fig. S6 DPV of Ru8/GNP complexes in $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaClO}_{4}-\left(\mathrm{H}_{2} \mathrm{O}: \mathrm{EtOH}=3: 1\right.$) at a glassy carbon electrode ($\phi=3 \mathrm{~mm}$) under Ar following the addition of D-fructose (A) or D-galactose (B). [D-fructose]: A; $0,0.5,1.0,2.5,5.0,7.5,10,25,50,100,150,250$ $\mu \mathrm{mol} \mathrm{dm}{ }^{-3}, \mathrm{~B} ; 0,0.5,1.0,2.5,5.0,7.5,10,25,50,100,150,250 \mu \mathrm{~mol} \mathrm{dm}{ }^{-3}$.

Fig. S7 A plot of $\left\{\left(I p^{0}-I \mathrm{p}\right) / I \mathrm{p}^{0} v s\right.$. [Sugar] (A) and a plot of $\left\{[\operatorname{Sugar}] /\left(\Delta I \mathrm{p} / I \mathrm{p}^{0}\right)\right\} v s$. [Sugar] (B) for the Ru0/B10/GNP complex

5

Fig. S9 Particle diameter measurement of gold nanoparticles by DLS by using Zetasizer Nano-ZS (Malvern Instrument Ltd.).

