Supporting material:

1. Methods

The content of organic carbon in geological samples was determined using a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The CF-IRMS system consists of an EA (Flash 1112 series) coupled to a Finnigan MAT 253 mass spectrometer. The combustion temperature was set at 960°C, and the temperature of reduction tube was set at 680°C. Standard samples with known carbon contents (glycine: C_{wt} %= 32%) were used to calibrate the measurement and to monitor the working conditions.

The carbonate percentage of geological samples was measured using GasBench II coupled to a Finnigan MAT 253 isotope ratio mass spectrometer. The geological samples were firstly weighed, carbonate contained in those samples then reacted with 103% phosphoric acid at 70°C to generate CO_2 and the resulted CO_2 was finally introduced to isotope ratio mass spectrometer for measurement. The area of first peak of sample CO_2 (m/z=44) was compared with that of pure carbonate standard to calculate the percentage of carbonate in geological samples.

Fig. S1 A statistical diagram showing (a) differences in δ^{13} C values (Δ^{13} C) and (b) differences in δ^{18} O values (Δ^{18} O) measured using Kiel IV, GasBench II and dual inlet IRMS.

Fig. S2 Changes in Δ^{13} C and Δ^{18} O values of loess, lake sediment and marl along with organic carbon (OC) content.

Fig. S3 Changes in Δ^{13} C and Δ^{18} O values of loess, lake sediment and marl along with carbonate (IC) percentage.

3. Table

Table S1 Contents of carbonate and organic carbon contained in carbonate nodules, loess, lake sediments and marl.

Tuna	Sample Me	Carbonate	Organic carbon	
Type	Sample No.	percentage (%)	content (%)	
	HD02-1	73.59	-	
Carbonate nodules	HD02-2	74.57	-	
	HD02-3	86.43	-	
	HDPE-205	28.46	-	
	LT-L1	10.70	0.25	
Loess	LT-L3	8.67	0.09	
	LP-3	11.73	1.95	

	LP-5	12.64	0.49
	LP-7	11.03	0.43
	LP-13	12.20	0.38
	LP-17	2.06	0.22
	LYX-S201	11.38	0.65
	TGL	6.38	0.24
	DH-281	28.44	2.35
	DH-491	40.65	2.61
	DH-495	41.18	2.73
	DH-537	35.97	2.27
	DH-539	30.25	1.77
Lake	DH-541	30.90	1.83
sediment	XY3-1-06	19.25	5.42
	XY3-1-130	5.46	2.02
	XY3-2-40	23.59	2.70
	XY3-2-150	40.46	3.61
	XY3-3-15	44.03	6.21
	XY3-3-91	31.96	7.40
	B32-3	6.43	0.42
	B34-17	17.93	0.17
	B34-18	11.33	1.10
Morl	B34-21	10.27	1.19
Ividii	B34-27	68.84	0.10
	B34-36	18.88	1.15
	B34-37	42.33	0.12
	B34-38	16.61	0.48

Table S2 δ^{13} C and δ^{18} O values of geological samples measured using Kiel IV-IRMS, GasBench II-IRMS and DI-IRMS.

Туре	Sample No.	$\delta^{13}C$			δ ¹⁸ Ο		
		Kiel IV	GasBench II	Duel Inlet	Kiel IV	GasBench II	Duel Inlet
Carbonate nodules	YAL-S0-C	-5.72	-5.72	-5.70	-9.48	-9.16	-9.48
	YAL-S1-B	-4.20	-4.27	-4.01	-8.61	-8.58	-8.96
	YAL-S2-2B	-4.97	-4.98	-5.06	-8.82	-8.69	-9.15
	TJK-S15	-8.14	-8.17	-8.16	-10.35	-10.08	-10.33
	HD02-1	-8.63±0.09	-8.59 ± 0.07	-	-7.10±0.02	-6.63±0.10	-
	HD02-2	-6.62±0.03	-6.70±0.07	-	-7.15±0.05	-6.94±0.14	-
	HD02-3	-8.62±0.15	-8.81 ± 0.08	-	-7.00 ± 0.01	$-6.84{\pm}0.08$	-
	HDPE-205	-8.03±0.06	-7.93±0.09	-	-7.02 ± 0.08	-7.00 ± 0.04	-
Loess	LT-L1	-5.98±0.07	-5.50±0.05	-	-7.97±0.11	-8.98±0.09	-
	LT-L3	-4.98 ± 0.08	-4.60±0.04	-	-8.36±0.04	-9.36±0.09	-
	LP-3	-5.41±0.06	-5.18±0.09	-5.18	-8.54±0.12	-8.67±0.03	-9.14
	LP-5	-2.79 ± 0.05	-2.89±0.01	-2.49	-8.51±0.02	-8.29±0.13	-8.54
	LP-7	-4.96±0.08	-4.38±0.01	-4.66	-8.80±0.15	-8.66 ± 0.06	-8.87

	LP-13	-3.61 ± 0.02	-3.43 ± 0.05	-3.22	-7.96±0.13	-7.84 ± 0.04	-8.06
	LP-17	-2.74±0.14	-2.79 ± 0.06	-2.84	-8.42±0.10	-9.08±0.17	-8.89
	LYX-S201	-3.80±0.01	-3.47 ± 0.05	-3.65	-6.90±0.10	-7.60 ± 0.05	-7.94
	TGL	-2.27±0.01	-1.63 ± 0.06	-1.67	-9.48±0.11	-9.37±0.31	-9.71
	DH-281	-2.47±0.05	-2.31±0.09	-	-1.90±0.09	-2.16±0.14	-
	DH-491	1.16±0.03	1.20±0.06	-	-5.88 ± 0.03	-5.91 ± 0.08	-
	DH-495	0.53±0.03	0.48 ± 0.03	-	-7.06±0.11	-7.04 ± 0.05	-
Lake sediment	DH-537	0.07 ± 0.01	0.06 ± 0.07	-	-4.82±0.04	-4.71±0.04	-
	DH-539	-0.99±0.06	-0.88 ± 0.02	-	-4.61±0.02	-4.69 ± 0.09	-
	DH-541	-1.42 ± 0.01	-1.46±0.03	-	-4.27±0.01	-4.47 ± 0.02	-
	XY3-1-06	0.94±0.03	0.81 ± 0.02	0.97	-5.72±0.07	-5.76±0.38	-6.23
	XY3-1-130	-0.31±0.01	0.06±0.16	0.01	-6.33±0.12	-6.76±0.23	-7.20
	XY3-2-40	-0.33±0.04	-0.41±0.13	-0.32	-6.62±0.06	-6.88±0.23	-6.97
	XY3-2-150	-1.31 ± 0.05	-1.34 ± 0.09	-1.25	-7.66±0.14	-7.67 ± 0.20	-7.78
	XY3-3-15	0.52 ± 0.06	0.43±0.10	0.52	-8.14±0.11	-8.06±0.14	-8.30
	XY3-3-91	0.78 ± 0.05	0.74±0.09	0.70	-10.65±0.14	-10.44 ± 0.15	-10.88
Marl	B32-3	-0.38±0.06	-0.18 ± 0.09	-	-8.53±0.02	-8.57 ± 0.02	-
	B34-17	-0.64 ± 0.02	-0.53±0.06	-	-6.67±0.09	-6.31±0.11	-
	B34-18	-0.63 ± 0.05	-0.61 ± 0.03	-	-7.87 ± 0.09	-7.60 ± 0.07	-
	B34-21	-0.46 ± 0.01	-0.41 ± 0.00	-	-7.21±0.06	-7.71 ± 0.09	-
	B34-27	0.73 ± 0.02	0.76±0.03	-	-6.23±0.10	-6.26±0.05	-
	B34-36	0.06 ± 0.01	0.13±0.09	-	-6.72±0.03	-6.72±0.11	-
	B34-37	0.51 ± 0.04	0.61±0.05	-	-6.23±0.01	-5.93±0.05	-
	B34-38	0.74 ± 0.06	1.02 ± 0.08	-	-6.65±0.07	-6.08±0.13	-