Supporting information

Fluorescent probe for sensing ferric ions in bean sprouts based on L-histidine-stabilized gold nanoclusters

Yuan Su 1, 2, Li Qi 2,*, Xiaoyu Mu 2, 3, Minglin Wang1, *

- ¹ Graduate School, Shandong Agricultural University, Shandong 271018, P. R. China
- ² Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- ³ Graduate School, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, P. R. China

* Correspondence:

qili@iccas.ac.cn

mlwang@sdau.edu.cn

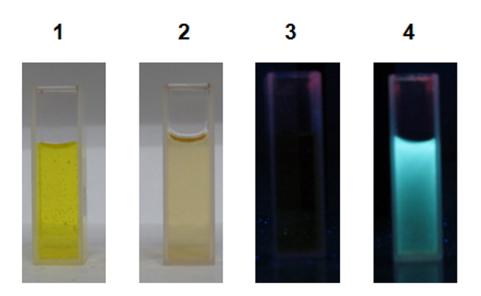
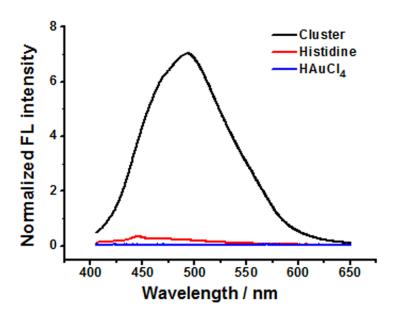



Fig. S1. Photographs under daylight (1, 2) and 365 nm UV light irradiation (3, 4) of Au NCs.

 $\textbf{Fig. S2.} \ \text{The fluorescence spectra of the Au NCs, histidine solution and } \ \text{HAuCl}_4 \ \text{solution}.$

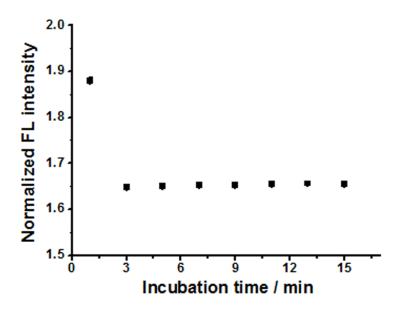
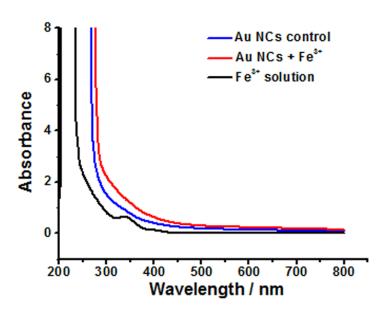
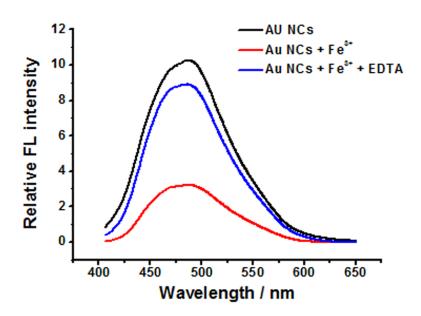




Fig. S3. Optimization of the incubation time for the fluorescence variation of the AuNCs in the presence of 1000.0 μ M Fe³⁺ ions.

Fig. S4. UV/Vis absorption spectra of Fe $^{3+}$ solution (black line), aqueous Au NCs (blue line) and Au NCs in the presence of 500.0 μ M Fe $^{3+}$ ions (red line).

Fig. 5. Fluorescence spectra of the Au NCs solution (black line), in the presence of 1000.0 μ M Fe³⁺ (blue line), and in the presence of 1000.0 μ M EDTA and Fe³⁺ (red line).