Supporting Information

A rhodamine hydrazide-based fluorescent probe for sensitive and selective detection of hypochlorous acid and its application in living cells

Zhen Zhang,*a Chengquan Deng,a Liesu Meng,b Yan Zhengc and Xiaomei Yanc

^a Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, China. E-mail: zzlinda@mail.xjtu.edu.cn; Fax: +86 29 82668559; Tel: +86 29 82663914.

^b Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.

^c Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Contents

1. UV-vis absorption spectra of probe **RGNH** with different levels of HOCl

2. Effect of the ratio of ethanol to water on the fluorescence response of probe **RGNH** to HOCl

3. Kinetic behavior of the fluorescence intensity changes of probe **RGNH** with HOCl

4. Fluorescence intensity changes of probe RGNH with HOCl and other ROS/RNS

5. Color changes of probe RGNH with HOCl and other ROS/RNS

6. Analysis of the reaction product between probe **RGNH** and HOCl by high-resolution ESI-MS

7. ESI-MS and ¹H NMR spectra of rhodamine 19, the product isolated from the reaction of probe **RGNH** with HOCl via column chromatography

8. ESI-MS, high-resolution ESI-MS, ¹H NMR, and ¹³C NMR spectra of probe RGNH

9. Comparison of the recently reported hydrazide-based fluorescent probes for HOCl or OCl⁻

1. UV-vis absorption spectra of probe RGNH with different levels of HOCl

Fig. S1 UV-vis absorption spectra of probe RGNH (10 μ M) with different levels of HOCl (bottom to top: 0, 2, 4, 6, 10, 14, 16, 22, 26, 30, 35, 40 μ M) in PBS (10 mM, pH 7.4, 1% ethanol, v/v). Inset: Absorbance changes of probe RGNH (10 μ M) at 525 nm as a function of HOCl concentration.

2. Effect of the ratio of ethanol to water on the fluorescence response of probe **RGNH** to HOCl

Fig. S2 Effect of the ratio of ethanol to water on the fluorescence intensity (550 nm) of probe RGNH (10 μ M) in the absence and presence of HOCl (20 μ M) in PBS (10 mM, pH 7.4). $\lambda_{ex} = 500$ nm.

3. Kinetic behavior of the fluorescence intensity changes of probe **RGNH** with HOCl

Fig. S3 Kinetic behavior of the fluorescence intensity changes (550 nm) of probe RGNH (10 μ M) in the absence and presence of HOCl (2, or 4 μ M) in PBS (10 mM, pH 7.4, 1% ethanol, v/v). $\lambda_{ex} = 500$ nm.

4. Fluorescence intensity changes of probe RGNH with HOCl and other ROS/RNS

Fig. S4 Fluorescence intensity changes (550 nm) of probe RGNH (10 μ M) upon addition of HOCl (2 μ M) or other ROS/RNS (10, 50, 100 μ M) in PBS (10 mM, pH 7.4, 1% ethanol, v/v). $\lambda_{ex} = 500$ nm.

5. Color changes of probe RGNH with HOCl and other ROS/RNS

Fig. S5 Color changes of probe **RGNH** (10 μ M) upon addition of HOCl (20 μ M), other ROS/RNS (100 μ M), or HOCl (20 μ M) plus L-methionine (200 μ M).

L-methionine

6. Analysis of the reaction product between probe **RGNH** and HOCl by high-resolution ESI-MS

Fig. S6 High-resolution ESI-MS spectrum of probe RGNH in the presence of HOCl.

7. ESI-MS and ¹H NMR spectra of rhodamine 19, the product isolated from the reaction of probe **RGNH** with HOCl via column chromatography

Fig. S7 ESI-MS spectrum of rhodamine 19.

Fig. S8 ¹H NMR spectrum of rhodamine 19.

8. ESI-MS, high-resolution ESI-MS, ¹H NMR, and ¹³C NMR spectra of probe RGNH

Fig. S9 ESI-MS spectrum of RGNH.

Fig. S10 High-resolution ESI-MS spectrum of RGNH.

Fig. S11 ¹H NMR spectrum of RGNH.

Fig. S12 ¹³C NMR spectrum of RGNH.

9. Comparison of the recently reported hydrazide-based fluorescent probes for HOCl or OCl⁻

Table S1. Comparison of the recently reported hydrazide-based fluorescent probes for HOCl or OCl⁻.

Probe	Response time	Detection limit	pH span of detection	Comments
	30 min	0.35 μΜ	5–9	HEPES buffer (pH 7.4) containing 50% (v/v) ethanol $I_{375}/I_{495} = 152$ fold Ratiometric fluorescent probe
Anal. Methods, 2014, 6, 609				
Anal. Chim. Acta, 2013, 775, 100	within 1 min	0.024 µM	7.5–11	PBS buffer (pH 8.5) containing 40% (v/v) DMF $I_{578}/I_{501} = 3955$ fold Ratiometric fluorescent probe
100				
Anal. Methods, 2012, 4, 616	more than 60 min	5.0 nM	6–11.3	water Fluorescent turn-on response $I_{548} = \text{over 82 fold}$ 10 equiv Cu ²⁺ and Hg ²⁺ induced around 10-fold enhancement at 548 nm
но основности и страниции и с	within 2 min	0.33 μM	no data available	PBS buffer (pH 7.4) with less than 1% ethanol Fluorescent turn-on response $I_{528} = 156$ fold Hg^{2+} induced 80-fold enhancement at 530 nm

Probe	Response	Detection limit	pH span of	Comments
<i>LHLLLLLLLLLLLLL</i>	10 min	0.06 µM	4.5–8	HEPES buffer (pH 7.4) containing 1% (v/v) DMF Fluorescent turn-on response $I_{550} = 270$ fold Cu^{2+} induced 100-fold enhancement at 550 nm Proton (especially under acid conditions, pH < 6) induced great enhancement at 550 nm Imaging both exogenous and endogenous HOC1 in living cells Low cytotoxicity when probe concentration below 100 µM
<i>Org. Biomol. Chem.</i> , 2011, 9 , 432	10 s	~ 1.0 nM	4–13	$Na_2B_4O_7/NaOH$ buffer (pH 12.0) containing 70% (v/v) methanol Fluorescent turn-on response $I_{580} > 420$ fold
<i>Chem. Eur. J.</i> , 2008, 14 , 4719	30 min	27 nM	9.2–12.7	Na ₂ B ₄ O ₇ /NaOH buffer (pH 12.0) containing 30% (v/v) THF Fluorescent turn-on response centered at 578 nm
$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & &$	completed immediately after the sample solutions were prepared	3.3 nM	5–14	PBS buffer (pH 7.4) with 1% (v/v) ethanol Fluorescent turn-on response $I_{550} = 1890$ fold Imaging both exogenous and endogenous HOCl in living cells Flow cytometry analysis of endogenous HOCl in living cells Low cytotoxicity when probe concentration below 100 μ M