Supporting Information

Facile and controllable synthesis of Prussian blue nanocubes on TiO₂-graphene composite nanosheets for nonenzymatic detection of hydrogen peroxide

Yanli Zhang, Jinling Xie, Shixiu Xiao, Zhongming Yang, Pengfei Pang*, Wei Bai and Yuntao Gao

Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, PR China

State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China

* Corresponding author. Tel.: +86 871 65910017; fax: +86 871 65910017.

E-mail: pengfeipang@yahoo.com (P. Pang)

Legends of supplemental figures:

Table S1 EIS parameters of different modified electrodes in 5 mM $[Fe(CN)_6]^{3-/4-}$ and 0.1 M KCl at a scan rate of 100 mV s⁻¹

Fig. S1 CVs for the electrodepostion of PB film on TiO₂-GR/GCE by continuous potential cycling for 20 cycles between -0.15 V and 0.4 V at a scan rate of 0.05 V s⁻¹ in a solution including 25 mM FeCl₃, 25 mM K₄Fe(CN)₆, 0.1 M KCl and 0.1 M HCl.

Fig. S2 FT-IR spectra of (a) GO and (b) GR.

Fig. S3 Nyquist plots of (a) GCE, (b) GR/GCE, (c) TiO_2/GCE , (d) TiO_2 -GR/GCE, (e) PB/TiO_2-GR/GCE and (f) Nafion/PB/TiO_2-GR/GCE in 5 mM [Fe(CN)₆]^{3-/4-} containing 0.1 M KCl.

Fig. S4 Cyclic voltammograms of (A) PB/TiO₂-GR/GCE and (B) Nafion/PB/TiO₂-GR/GCE in 0.1 M PBS + 0.1 M KCl (pH 6.0) at a scan rate of 50 mV s⁻¹ with 50 cycles.

Fig. S5 Effects of applied potential on the peak currents of Nafion/PB/GR-TiO₂/GCE in 0.1 M PBS and 0.1 M KCl (pH 6.0).

Table S1

EIS parameters of different modified electrodes in 5 mM $[Fe(CN)_6]^{3-/4-}$ and 0.1 M KCl at a scan rate of 100 mV s^{-1}

Electrode	$R_{\rm s}\left(\Omega\right)$	$C_{\rm dl}({\rm F})$	n	$R_{\rm ct}(\Omega)$	$W(\Omega)$
Bare GCE	145.1	3.57E-6	0.8233	100.8	0.4341
GR/GCE	115.4	1.17E-3	0.2853	44.2	0.5445
TiO ₂ /GCE	152.6	1.64E-6	0.9010	366.9	0.4676
TiO ₂ -GR/GCE	115.1	1.18E-3	0.2935	53.25	0.6314
PB/TiO ₂ -GR/GCE	103.2	1.83E-4	0.4610	26.41	0.002438
Nafion/PB/TiO2-GR/GCE	90.53	5.82E-4	0.4060	46.89	0.7943

Fig. S1 CVs for the electrodepostion of PB film on TiO₂-GR/GCE by continuous potential cycling for 20 cycles between -0.15 V and 0.4 V at a scan rate of 0.05 V s⁻¹ in a solution including 25 mM FeCl₃, 25 mM K₄Fe(CN)₆, 0.1 M KCl and 0.1 M HCl.

Fig. S2 FT-IR spectra of (a) GO and (b) GR.

Fig. S3 Nyquist plots of (a) GCE, (b) GR/GCE, (c) TiO_2/GCE , (d) TiO_2 -GR/GCE, (e) PB/TiO_2-GR/GCE and (f) Nafion/PB/TiO_2-GR/GCE in 5 mM [Fe(CN)₆]^{3-/4-} containing 0.1 M KCl.

Fig. S4 Cyclic voltammograms of (A) PB/TiO₂-GR/GCE and (B) Nafion/PB/TiO₂-GR/GCE in 0.1 M PBS + 0.1 M KCl (pH 6.0) at a scan rate of 50 mV s⁻¹ with 50 cycles.

Fig. S5 Effects of applied potential on the peak currents of Nafion/PB/GR-TiO₂/GCE in 0.1 M PBS and 0.1 M KCl (pH 6.0).