Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2014

Supporting Information

A Novel Photoelectrochemical Sensor for the Detection of α -Fetoprotein Based on

Mesoporous TiO2-CdS QDs Composite Film

Xiaoyan Yang*, Jingyu Li, Junliang Fu

Shandong Provincial Key Laboratory Of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.

* Corresponding author. Tel.: +86-532-84022700, Fax: +86-532-84022700

E-mail: yangxiaoyan zh@126.com

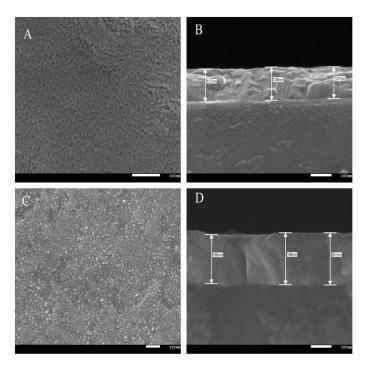


Fig. S1. The SEM of mesoporous TiO_2 film and $CdS/TiO_2/ITO$ film

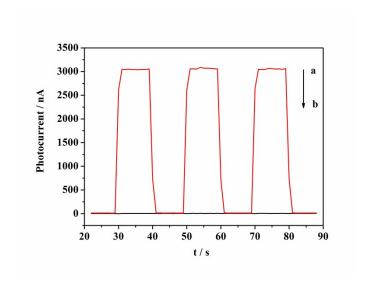


Fig. S2. Photocurrent responses of (a) CdS/TiO₂/ITO and (b) TiO₂/ITO in 0.01 M PBS suffer solution (pH=7.4) containing 0.1 M ascorbic acid solution as electron donor with a light excitation at 400 nm.

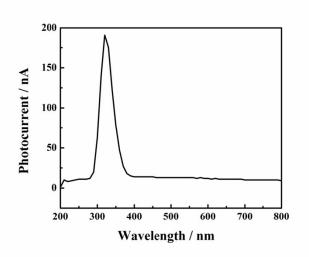


Fig. S3. Wavelengths scanning of TiO₂/ITO electrode in 0.01 M PBS suffer solution (pH=7.4) containing 0.1 M ascorbic acid solution as electron donor

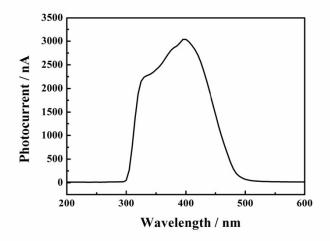


Fig. S4. Wavelengths scanning of $CdS/TiO_2/ITO$ electrode in 0.01 M PBS suffer solution (pH=7.4) containing 0.1 M ascorbic acid solution as electron donor

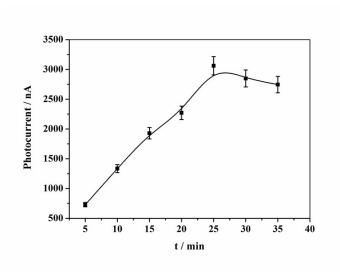


Fig. S5. Photocurrent change for CdS/TiO₂/ITO with different deposition time of CdS in 0.01 M PBS suffer solution (pH=7.4) containing 0.1 M ascorbic acid solution as electron donor with a light excitation at 400 nm.

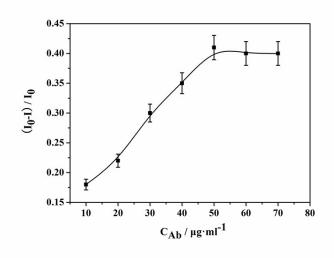


Fig. S6. Photocurrent change for different concentrations of anti-AFP on CdS/TiO₂/ITO in 0.01 M PBS suffer solution (pH=7.4) containing 0.1 M ascorbic acid solution as electron donor with a light excitation at 400 nm.

Table S1. The recovery studies of AFP

sample	original (ng/mL)	added (ng/mL)	found (ng/mL)	recoveries	average recoveries
1	0.474	1.00	1.42	94.6%	
2	1.02	1.00	2.11	109%	103%
3	5.15	1.00	6.20	105%	