One-step synthesis of Pt-decorated graphene-carbon nanotube for electrochemical sensing of dopamine, uric acid and ascorbic acid S. Ramakrishnan^{a,b}, K. R Pradeep^a A. Raghul^a R. Senthil kumar^{a,b}, Murali Rangarajan^{a,b}

Nikhil K. Kothurkar^{,*a,b}

^aCenter of Excellence in Advanced Materials and Green Technologies, Amrita Vishwa Vidyapeetham University, Coimbatore-641112 ^bDepartment of Chemical Engineering and Material Science, Amrita Vishwa Vidyapeetham University, Coimbatore-641112

Analyte Levels in Real Samples

Table S1: Comparison of the linear ranges and detection limits of the Pt-Gr-CNT/GCE sensing platform with the levels of ascorbic acid, dopamine and uric acid in blood and urine.

Analyte	Normal Levels	Linear Range (µM)	Detection limit in
	μM	(Pt-Gr-CNT/GCE)	buffer (µM)
AA	I ¹ : 3.29–10.67	200–900	50
	II ¹ : 7–522		
DA	I ² : 0.000065–0.00039	0.2–30	0.01
	H ² : 0.420–2.612		
UA	I ³ : 80–440	0.1–50	0.1
	H ⁴ : 1480–4430		

I: blood and II- Urine

Calculation of the Surface Area of Pt-Gr-CNT/GCE and GCE

The electrochemical behavior of GCE and Pt-CNT-GR/GCE was studied using cyclic voltammetry in 1mM ferricyanide solution at a scan rate 50 mV/s. It was found that both electrodes displayed reversible behavior. Using a diffusion coefficient of 6.3×10^{-6} cm²/s^{5,6}, the electroactive surface area was calculated from Randles-Sevcik equation given,

$$i_p = (2.69 \times 10^5) n^{3/2} D^{1/2} v^{1/2} AC(1)$$

where n is the number of electrons, A is the electrode surface area, C is the concentration, D is the diffusion coefficient and V is the scan rate.

Reference

- 1. D. Chamberlin and H. J. Perkin, *The American Journal of Digestive Diseases*, 1938, **5**, 493-497.
- 2. Georges Elhomsy and E. B. Staros, St Louis University School of Medicine, 2012.
- 3. J. Meschino, The Adëeva , The Natural choice of Healthcare 1996.
- 4. A. C. Poinier and N. A. Shadick, WebMD Medical Reference from Healthwise, 2012.
- 5. K. E. Heusler, *Berichte der Bunsengesellschaft für physikalische Chemie*, 1969, **73**, 1098-1098.
- 6. R. O. Kadara, N. Jenkinson and C. E. Banks, *Sensors and Actuators B: Chemical*, 2009, **138**, 556-562.