Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

A label-free electrochemical aptasensor for the detection of kanamycin in milk

Nandi Zhou,* Jibao Luo, Juan Zhang, Yuanding You, Yaping Tian

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of
Biotechnology, Jiangnan University, Wuxi 214122, China

*Corresponding author. Tel: +86-510-85197831; Fax: +86-510-85197831; E-mail:

zhounandi@jiangnan.edu.cn

Experimental

The modification of the aptamer on gold surface was monitored by surface plasmon resonance (SPR) measurement. The gold disk was prepared by soaking in piranha solution (98% $\rm H_2SO_4$:30% $\rm H_2O_2$ =3:1) for 5 min to remove all adsorbed substance. After rinsing with ultrapure water, the gold disk was fixed on an Autolab ESPRIT system (Echo Chemie B.V., Netherlands). Then the modification of kanamycin-specific aptamer was carried out by incubation with 1.0 μ M aptamer. The immobilization of the aptamer was real-timely monitored by SPR spectroscopy.

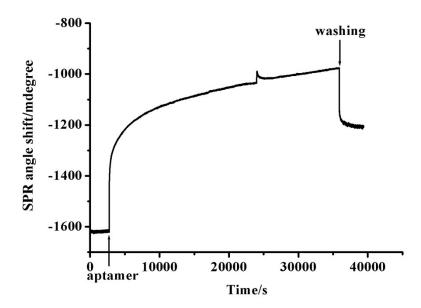
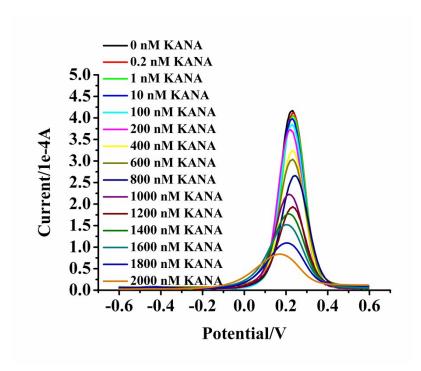
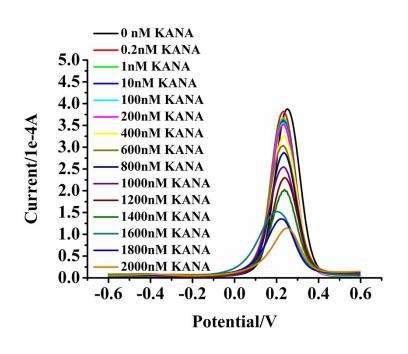




Fig. S1. SPR angle shift during the modification of the aptamer.

Fig. S2. Square wave voltammograms obtained in 10 mM $[Fe(CN)_6]^{3-/4-}$ after the aptamer functionalized electrode incubated with different concentrations of standard kanamycin solution.

Fig. S3. Square wave voltammograms obtained in 10 mM $[Fe(CN)_6]^{3-/4-}$ after aptamer functionalized electrode incubated with diluted milk samples containing different concentrations of kanamycin.