Supporting Information

A two-photon fluorescent probe for selective methylglyoxal detection and application in living cells

Tun Tang,‡ Yimin Zhou,‡ Yuqi Chen,‡ Mengjun Li, Yan, Feng, Changcheng Wang, Shaoru Wang and Xiang Zhou*

College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Hubei, Wuhan, 430072, P. R. of China, Corresponding Author Email Address: xzhou@whu.edu.cn

Table of Contents

Fig. S1 The two-photon active cross-section spectra of PDN-1	S3
Fig. S2 Two-photon fluorescent emission changes of PDN-1	S3
Fig. S3 The MGO selectivity against metal ions, anions and peroxide	S4
Fig. S4 The MGO selectivity against nitric oxide	S4
Fig. S5 pH dependency of PDN-1	S5
Fig. S6 Cell viability in MTT assay	S5
Fig. S7 Confocal fluorescence images of HeLa cells	S6
Catalog of ¹ H and ¹³ C NMR Spectra	S6-S9
Catalog of mass spectra and high resolution MS data report	

Fig. S1 The two-photon active cross-section spectra of PDN-1 (5 μ M) in the absence (black dot) and presence (red dot) of MGO (50 μ M). The reactions were carried out for 12 h at 37 °C in PBS buffer (10 mM, pH 7.4, containing 10% DMSO).

Fig. S2 The two-photon fluorescent emission changes of PDN-1 (5 μ M) in the absence (black line) and presence (red line) of MGO (50 μ M). The reactions were carried out for 12 h at 37 °C in PBS buffer (10 mM, pH 7.4, containing 10% DMSO). All samples were excited at 880 nm, and pulse width is 140 fs.

Fig. S3 Normalized fluorescent emission changes of PDN-1 (5 μ M) at 528 nm, which added MGO (50 μ M) in comparison with a series of metal ions, anions and peroxide at the same concentration, respectively. The reactions were carried out for 12 h at 37 °C in PBS buffer (10 mM, pH 7.4, containing 10% DMSO).

Fig. S4 Normalized fluorescent intensity of PDN-1 (5 μ M) at 528 nm. The reaction solutions contained MGO (50 μ M), SNAP (50 μ M) and NOC-7 (25 μ M, releases two equivalents of NO), respectively. Blank: PBS buffer only; MGO: methylglyoxal; NOC-7: 1-hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene (a spontaneous nitric oxide

releaser); SNAP: S-nitroso-N-acetyl-DL-penicillamine (a spontaneous nitric oxide releaser). The two nitric oxide releasers were fresh prepared before detection. All solutions were incubated at 37 \degree C in PBS buffer (10 mM, pH 7.4, containing 10% DMSO).

Fig. S5 Normalized fluorescent emission changes of PDN-1 (5 μ M) in the absence (black dot) and presence (red dot) of MGO (50 μ M). The reactions were carried out for 12 h at 37 °C in PBS buffer (10 mM, containing 10% DMSO) with different pH (ranging from 2.0 to 9.0). All samples were excited at 528 nm.

Fig. S6 Cell viability toward PDN-1 at different concentrations (500 nM , 1 μ M, 5 μ M, 10 μ M, 50 μ M, 100 μ M, 500 μ M, 1 mM) in MTT assay.

Fig. S7 One-photon confocal fluorescence images of HeLa cells: fluorescence (a), brightfield (b), and overlay (c), which incubated with probe PDN-1 (10 μ M) for 10 h. (d-f) are the respective fluorescence, brightfield and overlay images of HeLa cells pre-incubated with probe PDN-1 followed by MGO (100 μ M) incubation for 10 h. Live cells were used for imaging. Bar = 40 μ m.

Catalog of ¹H and ¹³C NMR Spectra

Catalog of mass spectra and high resolution MS data report

High resolution MS data report of compound 3:

Target Mass:

Target $m/z = 420.1676 \pm 0.002$

Charge = +1

Possible Elements:

Exact Mass:	Min:	Max:
12.000000	0	100
1.007825	0	100
14.003074	0	5
15.994915	0	5
	Exact Mass: 12.000000 1.007825 14.003074 15.994915	Exact Mass:Min:12.00000001.007825014.003074015.9949150

Additional Search Restrictions:

DBE Limit Mode = Both Integer and Half-Integer

Minimum DBE = 0

Search Results:

Number of Hits $= 2$			
Delta m/z	DBE	Formula	
-0.00037	14.0	$C_{24}H_{24}N_2O_5^{+1}$	
0.00097	14.5	$C_{22}H_{22}N_5O_4^{+1}$	
	Hits = 2 <u>Delta m/z</u> -0.00037 0.00097	Hits = 2 Delta m/z DBE -0.00037 14.0 0.00097 14.5	

High resolution MS data report of PDN-1:

Target Mass:

Target $m/z = 390.1932 \pm 0.002$

Charge = +1

Possible Elements:

Element:	Exact Mass:	Min:	Max:
С	12.000000	0	100
Н	1.007825	0	100
Ν	14.003074	0	5
0	15.994915	0	5

Additional Search Restrictions:

DBE Limit Mode = Both Integer and Half-Integer

Minimum DBE = 0

Search Results:

Number of Hits $= 2$			
m/z	Delta m/z	DBE	Formula
390.19379	-0.00059	13.0	$C_{24}H_{26}N_2O_3^{+1}$
390.19245	0.00075	13.5	$C_{22}H_{24}N_5O_2^{+1}$

High resolution MS data report of compound 4:

Target Mass:

Target m/z = 426.1935 ± 0.002

Charge = +1

Possible Elements:

Element:	Exact Mass:	Min:	Max:
С	12.000000	0	100
Н	1.007825	0	100
Ν	14.003074	0	5
0	15.994915	0	5

Additional Search Restrictions:

DBE Limit Mode = Both Integer and Half-Integer

Minimum DBE = 0

Search Results:

Number of Hits = 2

m/z	Delta m/z	DBE	Formula
426.19379	-0.00029	16.0	$C_{27}H_{26}N_2O_3^{+1}$
426.19245	0.00105	16.5	$C_{25}H_{24}N_5O_2^{+1}$