Supplementary information for

Dual Color Fluorescence Quantitative Detection for Mercury

in Soil with Graphene Oxide and Dye-labeled Nucleic Acids

Kun Zhai^{a,b}, Yonghong Liu^a, Dongshan Xiang^b, Guangguang Guo^a, Tianying Wan^a,

Hongqing Hu^{a*}

^a College of Resources and Environment, Huazhong Agricultural University, Wuhan

430070, China

^b School of Chemical and Environmental Engineering, Hubei University for Nationalities, Enshi 445000, China

Fig.S1 The image of scanning electron microscopy (SEM) of GO

Fig.S2 The X-ray diffraction (XRD) spectrum of GO

Fig.S3 Fluorescence quenching of free fluorescence probes (P1 and P2, 4×10^{-8} mol·L⁻¹) in the presence of GO with a series of concentrations (a \rightarrow i: 0, 1, 2, 3, 4, 5, 6, 8, 10 µg·mL⁻¹)

Fig. S4 Effect of different pH on the fluorescence intensity (A-FAM; B-ROX). Concentration of fluorescence probes: 4×10^{-8} mol·L⁻¹; Concentration of Hg²⁺: 8×10^{-8} mol·L⁻¹.

Fig. S5 Effect of different incubated temperature on the fluorescence intensity (A-FAM; B-ROX). Concentration of fluorescence probes: $4 \times 10^{-8} \text{ mol} \cdot \text{L}^{-1}$; Concentration of Hg²⁺: $8 \times 10^{-8} \text{ mol} \cdot \text{L}^{-1}$.

Fig. S6 Effect of different incubated time on the fluorescence intensity (A-FAM; B-ROX). Concentration of fluorescence probes: $4 \times 10^{-8} \text{ mol} \cdot \text{L}^{-1}$; Concentration of Hg²⁺: $8 \times 10^{-8} \text{ mol} \cdot \text{L}^{-1}$.

Fig. S7 Effect of different ionic strength of buffer solution on the fluorescence intensity (A-FAM; B-ROX). Concentration of fluorescence probes: $4 \times 10^{-8} \text{ mol} \cdot \text{L}^{-1}$; Concentration of Hg²⁺: $8 \times 10^{-8} \text{ mol} \cdot \text{L}^{-1}$.