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1 Theory

The system that we describe, schematically presented in Figure S1, consists of a micelle of radius R which has
end-tethered NN neutral polymers (poly ethyleneglycol) (PEG) and NB polybases (e.g., poly((dimethylamino)ethyl
methacrylate) (PDMAEMA)). The degree of polymerization or length of the neutral polymer chain is nN . The
polybase consists of nB monomer units; each unit is a basic group which can be either protonated (BH+) or
deprotonated (B). The free end of the polybase has a ligand that has specific interactions with the receptors of the
lipid membrane. The micelle is positioned a distance D from a surface. The distance is measured from the center
of the sphere to the surface. The system is in a solution with fully dissociated salt, NaCl, and at a given pH, in
most cases both are physiological conditions.

We assume that the system is rotationally invariant along the axis perpendicular to the surface and passing
through the poles of the micelle or sphere. This axial symmetry is used explicitly by employing cylindrical coordi-
nates (r, ϕ, z), enabling the integration of the azimuthal angle ϕ and consequently reducing the problem from three
to two dimensions.
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Figure S1: Left: Schematic representation of a nanomicelle with functionalized head-groups. The neutral polymers
are represented by blue lines and the polybases (black lines) have a ligand at the free end, (green dot) which interacts
with receptors head-group (black) of lipids found in the lipid membrane. The lipid membrane consists of lipids with
acidic head -groups, (phosphatidylserine). Right: Representation of the cylindrical coordinate system used. The
gray area in the right figure on the sphere represents a surface element with uniform properties.

We describe both end-tethered solid nanoparticles and micelles. For solid nanoparticles the chains are irreversibly
end-grafted to the nanoparticle; however, in the case of micelles tethered with polymers, the end-grafted polymer
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chains are able to diffuse on the surface, i.e., have translational entropy1, since they are part of the surfactant head
group. The mobility of the chains implies that we have to allow for an inhomogeneous distribution of the polymers
on the micelle. Therefore it is convenient to introduce the local surface of coverage: σi(θ) = Ni(θ)/A(θ), which
corresponds to the number of polymers of type i tethered to a surface sector θ divided by the area of the surface
sector. See figure S1. In case of an homogenous polymer distribution the local surface coverage, σi(θ), equals the
global surface coverage, σi = Ni/Asurf. Here Asurf is the total surface area of the sphere. Otherwise the total surface
coverage is given by the integral σi =

∫
dA(θ)Ni(θ)/Asurf.

The surface consists of a mixture of neutral and charged lipids. The lipids on the membrane are characterized
by the areal surface density of their components, which are denoted by σN (r) and σC(r), respectively referring
to the neutral and negatively charged lipid. The later molecule can be found either in its protonated (AH) or
deprotonated (A−) state; σC(r) = σA−(r) + σAH(r). Each, neutral and anionic lipids have an area per lipid of
a0 = 0.65 nm2. Furthermore, the lipid layer may contain overexpressed receptors. We only consider the case in
which the receptors are in large excess and therefore we do not need to consider their density explicitly.

The total free energy describing the system has the following contributions

F = −TSconf − TSmix,poly − TSmix + Erep + Eelec + Fchem +Gbind + Fsurf, (1)

where T is the temperature. In the following we describe each of the terms of the free energy in terms of the
probability functions and local varying densities. The first term in the free energy represents the conformational
entropy of the polymer chains and is given by

−Sconf(D)

kB
=

∫
dθ NN (θ)

∑
αN

P (αN , θ,D) lnP (αN , θ,D)

+

∫
dθ NB(θ)

∑
αB

P (αB , θ,D) lnP (αB , θ,D) (2)

The first term denotes the conformation entropy of the neutral chains whereas the second term represent the
conformation entropy of the basic polymer chains.

Here, P (αi, θ,D) is the probability of finding a type i polymer chain tethered to the surface element θ and
micelle lipid membrane distance D in a conformational state αi. Ni(θ)dθ is the number of polymer chains of type i
tethered to the surface sector located in the interval (θ, θ+ dθ). The micelle and the lipid membrane are a distance
D apart. See fig. S1.

The second term in the free energy accounts for the translational entropy of the mobile chains relative to their
entropy for a homogeneous surface distribution of the chains; σi = Ni/Asurf .

−Smix,poly(D)

kB
=

∫
dθ NN (θ)(lnσN (θ)/σN − 1) +

∫
dθ NB(θ)(lnσB(θ)/σB − 1). (3)

In case of immobile tethers the local surface coverage is fixed and this translational entropy contribution to the free
energy is constant since σB(θ) = σB and σN (θ) = σN .

The third term in the free energy denotes the mixing (translational) entropy of all other species in the system;
i.e., water, cations, anions, protons, and hydroxyl ions.

−Smix(D)

kB
=

∫∫
dr dzG(r, z)ρw(r, z)(ln ρw(r, z)vw − 1)

+

∫∫
dr dzG(r, z)ρNa+(r, z)(ln ρNa+(r, z)vw − 1)

+

∫∫
dr dzG(r, z)ρCl−(r, z)(ln ρCl+(r, z)vw − 1)

+

∫∫
dr dzG(r, z)ρH+(r, z)(ln ρH+(r, z)vw − 1 + βµ


H+)

+

∫∫
dr dzG(r, z)ρOH−(r, z)(ln ρOH−(r, z)vw − 1 + βµ


OH−). (4)

Here ρj(r, z) is the number density of molecular species j at position (r, z) and G(r, z)drdz corresponds to the
volume element that in cylindrical coordinates is equal to 2πrdrdz. The terms corresponding to the protons and
hydroxyl atoms include also the standard chemical potential (µ


i ) of those species as these terms are necessary for
the proper consideration of the chemical equilibrium, see below.
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The fourth term, Erep, of the free energy describes the intermolecular excluded volume interactions, which are
accounted for by assuming that the system is incompressible at every position. Namely, that the sum of the volume
fraction of polymers, solvent, and ionic species add up to one at every postition;

〈φN (r, z)〉+ 〈φB(r, z)〉+ ρw(r, z)vw + ρNa+(r, z)vNa+ + ρCl−(r, z)vCl−

+ ρH+(r, z)vH+ + ρOH−(r, z)vOH− + φM (r, z) = 1. (5)

These packing constraints are enforced in the minimization of the free energy through the introduction of the
Lagrange multipliers π(r, z), see below. Here 〈φN (r, z)〉 and 〈φB(r, z)〉 correspond to the volume fraction of the
neutral polymer and the polybase. These volume fractions are given by :

〈φi(r, z)〉 =

∫
dθ

Ni(θ)

G(r, z)

∑
αi

P (αi, θ,D)ni(αi, θ; r, z)v
p
i . (6)

Here ni(αi, θ; r, z)drdz is the number of segments of polymer type i in the volume element G(r, z)drdz when
its conformation αi is tethered to surface area element A(θ)dθ. The area element A(θ) is given by A(θ)dθ =
2π sin(θ)R2dθ. vpi denotes the volume of one polymer segment of type i. In the packing constraint Eq. 5, φM (r, z)
denotes the volume fraction of the micellar core, which is introduced to allow for solvent and ions to penetrate the
micellar core. We assume φM (r, z) = φM = constant for those r, z coordinates inside the micellar core. Throughout
the calculation we set φM = 0.9. Note that the results are insensitive to the particular choice of φM .

The hydrophobicity of the polymers, i.e., the solvent quality, can be described by an effective attractive Van
der Waals interaction2

EVdW =
1

2

∫
d~r

∫
d~r′χp(|~r − ~r′|)〈φp(r, z)〉〈φp(r′, z′)〉. (7)

We limit ourself to good-solvent conditions (χp = 0) because the polymers we model, PEG and PDMAEMA, are
water soluble, i.e., water acts as a good solvent for them.

The fifth term in equation 1 describes the electrostatic energy contribution to the free energy3

Eelect(D) = β

∫∫
dr dz G(r, z)

(
ρq(r, z)ψ(r, z)− 1

2
ε(r, z)(∇ψ(r, z))2

)
+ β

∫
dr A(r)σq(r)ψ(r, 0), (8)

here ψ(r, z) corresponds to the electrostatic potential and ρq(r, z) to the charge density. The charge density is the
sum of the charge arising form the protonated polybase units and the free ionic species and is given by

ρq(r, z) = f(r, z)〈ρB(r, z)〉e+ ρNa+(r, z)e− ρCl−(r, z)e+ ρH+(r, z)e− ρOH−(r, z)e, (9)

where e is the unit of charge, 〈ρB(r, z)〉 equals the density of polybase monomers, and f(r, z) corresponds to the
fraction of polybase segments that are charged at r, z. The surface charge density σq(r) refers to the amount of
charged lipid molecules found on the model cell membrane at r, to be discussed in more detail below.

The free energy associated with the (de)protonation of the base group of the polymer (B + H+ � BH+) is
represented by4,5

βFchem(D) = β

∫∫
dr dz〈ρB(r, z)〉

(
f(r, z)(ln f(r, z) + βµ


BH+)

+(1− f(r, z))(ln(1− f(r, z)) + βµ

B)) (10)

The first and third term describe the entropy of mixing between the protonated and deprotonated states at each r, z.
The second and fourth term represent the standard chemical potential of forming a protonated and a deprotonated
state respectively.

The seventh contribution, Gbind, to the free energy describes the free energy change associated with the binding
of a ligand attached to the end-group of the polybase chain to a receptor located on the lipid membrane. It is
assumed that the number of receptor sites on the membrane are in excess corresponding to conditions for which a
surface has overexpressed receptors. Then, the free energy contribution of the ligand-receptor binding is given by
the number of end-groups (neB(αB , θ; r, 0)) or ligand-receptor pairs at the membrane times the free energy to form
one ligand-receptor bond, ∆Gbind.

βGbind(D) = β

∫∫
dr dz G(r, z)

∫
dθ Ni(θ)

∑
α=αB

P (αB , θ,D)neB(α, θ; r, z)∆Gbindδ(z). (11)
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The free binding energy is expressed in units of kBT . It is possible to take into consideration with the theory cases
where the amount of receptors are not in excess and include within the theoretical framework both the amount of
receptors on the surface as well as the fraction of ligand that bind.6,7

The last term of the free energy functional labeled Fsurf represents the free energy contribution arising from the
surface lipids8–11.

βFsurf(D) =

∫
dr A(r)σN (r)(ln(σN (r)/σl)− 1) + σC(r)(ln(σC(r)/σl)− 1)

+

∫
dr A(r)σC(r)

[
x(r)(lnx(r) + βµ


A−) + (1− x(r))(ln(1− x(r)) + βµ

AH)

]
. (12)

The first two terms in Fsurf represent the (translational) mixing entropy of the mixture of neutral and charged
lipid molecules present on the membrane. Here σN (r) and σC(r) are the local areal surface density of the head
groups of the neutral and anionic lipids. The lipid membrane is covered with neutral and charged lipids; hence
the areal density of both lipids at every position on the membrane add up to the total areal lipid density; σl =
σC(r) + σN (r). These constraints are enforced through the introduction of Lagrange multipliers πs(r) in the free
energy minimization. The neutral and anionic lipid have the same area per lipid a0 = 0.65nm2. Consequently
σl = 1/a0 = 1.54nm2. The anionic lipid is considered to be a weak acid (AH � A− + H+), thus it is either
protonated (AH) of deprotonated (A−) depending on its local environment. The energy and entropic contribution
arising from this acid-base chemical equilibruim are accounted for by equation 12. Here x(r) is the fraction of
acidic lipids that are charged (deprotonated) at r: x(r) = σA−(r)/(σA−(r) + σAH(r)) = σA−(r)/σC(r). Following
this definition the total surface charge density at position r becomes σq(r) = −ex(r)σC(r). The standard chemical
potential µ


AH and µ

A+ in Eq. 12 denote the free energy of the protonated and deprotonated state respectively and

the remaining terms represent the entropy of mixing associated with the protonated and deprotonated state.
The above form of Fsurf corresponds to a lipid membrane in the liquid-disordered phase, i.e., the lipids are

mobile, and the charged lipids are charge regulating (weak acids). Expressions for lipids membranes in a gel phase
where the lipids can not move or where the anionic lipids are not charge regulating can be obtained from the above
expression by appropriately considering constant lipid areal density or a constant charged lipid fraction. Four
different scenarios have been considered, namely the lipid membrane is either in the liquid-disorder or gel phase
(mobile or immobile) and the charged lipids are either charge regulating or not.

To establish the thermodynamic equilibrium state, the free energy is minimized with respect to the Pi(α, θ),
ρi(r, z), Ni(θ), f(r, z), x(r), σN (r), and σC(r), and varied with respect to the electrostatic potential ψ(r, z) under
the constraints of incompressibility, mass balance of the polymer chains, and the fact that the system is in contact
with a bath of cations, anions, protons, hydroxyl atoms, and lipids. The proper thermodynamic potential becomes:

βW = βF + β

∫∫
dr dz G(r, z)π(r, z) (〈φN (r, z)〉+ 〈φB(r, z)〉+ ρw(r, z)vw + ρNa+(r, z)vNa+

+ρCl−(r, z)vCl− + ρH+(r, z)vH+ + ρOH+(r, z)vOH− + φM (r, z)− 1)

+β

∫
dr A(r)πs(r) (σN (r) + σC(r)− σl)

−βµN
∫

dθ (NN (θ)−NN )− βµB
∫

dθ (NB(θ)−NB)

−
∑

i=Na+,Cl−

βµi

∫∫
dr dz G(r, z)ρi(r, z)− µC

∫
dr A(r)σC(r). (13)

The number of independent thermodynamic components is reduced by three, because the system is incompressible,
charge neutral, and the water molecules are in chemical equilibrium with the protons and hydroxyls atoms. Due
to these constraints, the chemical potentials are exchange chemical potentials. Equivalently, the area constraint
reduces the number of independent surface components. Therefore it is unnecessary to explicitly introduce the
exchange chemical potential for both the neutral and anionic lipid. For a more extended discussion on the subject
of exchange chemical potentials see references2 and5. The total number of polybase and neutral polymer chains are
fixed at a value of NB and NN respectively; i.e.,

∫
Ni(θ)dθ = Ni. The Lagrange multipliers µB and µN introduced

to impose these (mass balance) constraints for the polymers can be identified as the chemical potentials of the
polybase and the neutral polymer respectively.

Minimization yields for the probability distribution function of the neutral (PEG) molecule

P (αN , θ,D) =
1

qN (θ,D)
exp

[
−β
∫∫

nN (αN , θ; r, z)π(r, z)vpNdrdz

]
, (14)
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here qN (θ,D) is a normalization factor ensuring that the probability distribution function is properly normalized:∑
αN

P (αN , θ,D) = 1. The term in the exponential results from the repulsive interactions that a neutral polymer
in conformation αN experiences.

Minimization yields for the probability distribution function of a polybase molecule the following equation

P (αB , θ,D) =
1

qB(θ,D)
exp

[
−β
∫∫

nB(αB , θ; r, z)π(r, z)vpBdrdz − β
∫
neB(αB , θ; r, 0)∆Gbinddr

]
× exp

[
−
∫∫

nB(αB , θ; r, z) (βψ(r, z)e+ ln(f(r, z))) drdz

]
. (15)

The first term in the exponential is identical in meaning to the one appearing in the pdf of the neutral polymer. The
second term is an attractive contribution arising from the binding of the functional end-group of the polymer chain
when in contact with the surface. This term only contributes to P (αB , θ,D) when the end-group of conformation
αB for a given anchor location θ reaches the membrane. The remaining two terms represent contributions arising
from the electrostatic interaction and the chemical equilibrium. The probability distribution functions, like other
variables such as the densities, also depend on the distance D between the micelle and the lipid membrane.

Minimization of the free energy with respect to the local number of tethered polymers or equivalently the local
surface coverage gives

βµi(D) = − ln(qi(θ,D)) + ln(σi(θ)/σi). (16)

The surface coverage of polymers of type i is

σi(θ) = σie
βµi(D)qi(θ,D) with eβµi(D) =

Asurf∫
A(θ)qi(θ,D)dθ

. (17)

The second equation is obtained by integration over the surface of the sphere and using the relations
∫
A(θ)σi(θ)dθ =

Ni and
∫
A(θ)dθ = Asurf. The above equations guarantee that the chemical potential, µi, of the polymer chains

of type i is the same for every position along the micelle’s surface, as required by thermodynamic equilibrium.
The equations also demonstrate the non-local coupling that exists between the polymer chains tethered at different
grafting positions and show that the chemical potential will change with the separation between micelle and lipid
membrane. As the distance is reduced, the polymer layer get confined. The confinement results in a change of the
probability distribution function of the chains that causes a change of the chemical potential of the polymers.

By minimizing the free energy with respect of degree of dissociation of the polybase we obtain

f(r, z)

1− f(r, z)
= K


b

φH+(r, z)

φw(r, z)
. (18)

Here K

b = exp (−β∆G


b ) with ∆G

b = µ


BH+ − µ

B − µ


H+ which is equal to the standard free energy of the
chemical reaction (B+H+ � BH+). K


b is the equilibruim constant of the chemical reaction and is related to the
equilibrium constant in bulk solution Kb = [BH+][OH−]/[B] = CKwK



b . Here [] denotes the molar concentration

and Kw is the water equilibrium constant. The constant C is needed for consistency of units as Kb has the units
of molarity whereas K


b is dimensionless (C = 1/(NAvw)).
Variation of the free energy functional with respect to the electrostatic potential ψ(r, z) leads to the Poisson

equation and its boundary conditions:3,5

∇(ε(r, z)∇ψ(r, z)) = −〈ρq(r, z)〉 ∧ ε∇ψ · nS |∂V = −σq(S). (19)

Here ∇ corresponds to the gradient or del operator in cylindrical coordinates. The second term represent the
boundary conditions with the lipid surface, the micellar core, as well as the boundary conditions with the bulk
solution. The explicit electrostatic boundary condition for the lipid surface (z = 0) reads:

−εwε0
∂ψ(r, z)

∂z

∣∣∣∣
z=0

= σq(r). (20)

For z → ∞ we can set limz→∞ ψ(r, z) = 0. For general z we need to use ∂
∂rψ(r, z) = 0 as only when there is no

charge on the surface (σq(r) = 0) does limr→∞ ψ(r, z) = 0.
Minimization of the free energy with respect of solvent density yields

φw(r, z) = ρw(r, z)vw = exp (−βπ(r, z)vw) . (21)
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The physical meaning of the Lagrange multipliers can be understood from the last expression. They correspond to
the position dependent osmotic pressures. One can also view them as the average interaction or potential due to
the excluded volume interactions. A more detailed discussion on the physical significance of these quantities can be
found elsewhere2.

The expressions for the densities of the cations and anions are

ρNa+(r, z)vw = exp (βµNa+ − βπ(r, z)vNa+ − βψ(r, z)e) , (22)

ρCl−(r, z)vw = exp (βµCl− − βπ(r, z)vCl− + βψ(r, z)e) , (23)

while the density of the proton and hydroxyl ions are given by

ρH+(r, z)vw = exp
(
βµ


H+ − βπ(r, z)vH+ − βψ(r, z)e
)
, (24)

ρOH−(r, z)vw = exp
(
βµ


OH− − βπ(r, z)vOH− + βψ(r, z)e
)
. (25)

In deriving the above equations we assumed that the system is in contact with a bath of ions. Therefore, as a
consequence of thermodynamic equilibrium, the chemical potentials of the ions are constant at every position and
their values are determined by the bulk conditions.

By minimizing the free energy with respect of the degree of dissociation of the acidic lipid x(r) we get

x(r)

1− x(r)
= K


a

φw(r, 0)

φH+(r, 0)
= K


a exp(βµ

H+) exp(βψ(r, 0)e). (26)

This expression is similar to the equation for the degree of dissociation of the polybase. Here K

a = exp (−β∆G


a )
with ∆G


b = µ

A− + µ


H+ − µ

AH which is equal to the standard free energy of the chemical reaction. K


a is the
equilibrium constant of the acid-base chemical reaction, AH � A−+H+, and is related to the equilibrium constant
in bulk solution Ka = [A−][H+]/[AH] = CK


a . Observe that the second part of the chemical equilibrium equation
is presented to stress the similarity with the chemical equilibrium equation of the polybase. In practice the third
equation is used, which depends only on the surface electrostatic potential and µ


H+ which can be related to the
bulk concentration of the protons; i.e., pH = − log[H+].

For the density of the neutral and anionic lipids we get

σN (r)/σl = exp(−βπs(r)), (27)

σC(r)/σl = exp(−βπs(r)− βψ(r, 0)(−e) + lnx(r)− β(µ

A− + µC)). (28)

Compare the above equations with the equations obtained for the ions and the probability distribution functions.
They are similar in content and meaning. The value of the chemical potentials can be determined from the bulk
composition of the lipid membrane. It turns out to be convenient to introduce the following variable: fl(r) =
σC(r)/(σN (r) + σC(r) = σC(r)/σl, which is equal to the fraction of acidic lipids in the membrane at position r.
Consequently σC(r) = fl(r)σl , σN (r) = (1− fl(r))σl and fl(r) as a function of x(r) becomes

fl(r)

1− fl(r)
=
e−β(µ



AH−µC)

1− x(r)
(29)

The above equation can be readily solved once the bulk composition f bulkl and surface potential ψ(r, 0) are known.
Having found the equations describing the thermodynamical equilibrium the minimal free energy can be ob-

tained. The effective interaction between the micelle and the surface is given by

β∆W (D) = βW (D)− βW (∞)

= β(µN (D)− µN (∞))NN + β(µB(D)− µB(∞))NB

−1

2
β

∫∫
drdzG(r, z) (〈ρq(r, z)〉ψ(r, z)− 〈ρq,∞(r, z)〉ψ∞(r, z))

−β
∫∫

drdzG(r, z) (π(r, z)(1− φM (r, z))− π∞(r, z)(1− φM,∞(r, z)))

−
∑

i=w,Na+,Cl−,H+,OH−

∫∫
drdzG(r, z)(ρi(r, z)− ρi,∞(r, z))

−β
∫

drA(r)(πs(r)− πs,∞)− 1

2
β

∫
A(r) (σq(r)ψ(r, 0)− σq,∞ψ∞(r, 0)) , (30)
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which corresponds to the difference between the free energy when the micelle and the surface are a distance D apart
and when they are infinitely far apart. Equation 30 is obtained by substituting the equations for the densities of
the ions, solvent, lipids, the pdfs and local surface coverage of the polymers, the electrostatic potential, and the
degree of dissociation of both polybase and acidic lipid into the free energy expression (Eq. 13).

The unknowns in Eqs. 21-29 and 14-18 are the lateral pressures and electrostatic potential.5,12 Application of
the theory requires the determination of these lateral pressures and electrostatic potential. The unknown lateral
pressure and electrostatic potential can be obtained by substituting the volume fractions and areal densities of
the lipids into the incompressibility constraint, Eq. (5), the Poisson Eq. (19) and the Eq. (29 and 26), the
later two equations determine the composition of the lipid membrane. The resulting set of coupled non-linear
integrodifferential equations can be discretized and solved numerically. Technical aspects of how to apply and
numerically solve the theory are outlined in the next section. The input necessary to solve the equations are the
surface coverage of the neutral polymers and polybases, σN and σB , the binding energy ∆Gbind and the radius R
of the nanomicelle, the distance D between nanomicelle and surface, and the sets of polymer conformations for the
neutral polymer and polybase, αN and αB , the pKb of the polybase, the pKa of the acidic lipid, the bulk fraction
of neutral and acidic lipids, and the salt concentration and pH of the bulk solution.

2 Numerical methodology

A numerical solution for the position dependent lateral pressure π(r, z) and electrostatic potential ψ(r, z) is
obtained by discretization of the packing constraints, Eq. (5), and the Poisson Eq. (19). The equations are
discretized by dividing the rz-plane into a grid of squares of length δ. Functions are assumed to be constant within
a grid cell, hence integrations can be replaced by summations. The integral of a general position dependent function
f(r, z) then becomes:∫ ∫

drdz G(r, z)f(r, z) =
∑
i,j

∫ iδ

(i−1)δ
dr

∫ jδ

(j−1)δ
dz G(r, z)f(r, z) ≈

∑
i,j

f(i, j)∆G(i, j), (31)

with

∆G(i, j) =

∫ iδ

(i−1)δ
dr

∫ jδ

(j−1)δ
dz G(r, z). (32)

Here f(i, j) denotes the value which function f(r, z) attains within the region located between (i−1)δ ≤ r < iδ and
(j − 1)δ ≤ z < jδ, and G(r, z)drdz = 2πrdrdz corresponds to a volume element. The geometric factor ∆G(i, j) is
the finite volume of the discrete cell. The calculations can be carried out outside the micelle (sphere with excluded
volume interactions) and the derived expressions are strictly valid in that region of space. For discretization of the
Poisson equation, to be discussed below, it turns out to be convenient to consider also the inside of the micellar
core. This requires a small modification of the discretization of the grid cells. Namely, grid cells (i, j) whose region
coincide with the boundary of the micellar core are split in two cells; one that is strictly on the outside and the
other that is strictly on the inside. For those grid cells the integration boundary needs to be modified to account
for the presence of the boundary of the micellar core. For grid cells (i, j) strictly located outside/inside the sphere:
∆G(i, j) = π(2j − 1)δ3.

Integration of the area of the sphere are discretized as follows,∫
dθA(θ)g(θ) ≈

∑
k

g(k)∆A(k), (33)

with ∆A(k) =
∫ θk
θk−1

dθ A(θ). The integration boundaries are determined by the discretization of the grid.

The packing constraint, Eq. (5), in discrete form for grid cell (i, j) read

〈φN (i, j)〉+ 〈φB(i, j)〉+ φw(i, j) + φNa+(i, j) + φCl−(i, j) + φH+(i, j) + φOH−(i, j) + φM (i, j) = 1. (34)
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Eqs. (21), (6), (14), (15), and (17) in discrete form become

φw(i, j) = exp(−βπ(i, j)vw), (35)

〈φγ(i, j)〉 =
∑
k

∆A(k)σγ(k)

∆G(i, j)

∑
αγ

P (αγ , k,D)n(αγ , k; i, j)vp (36)

n(αγ , k; i, j) ≡
∫ iδ

(i−1)δ
dr

∫ jδ

(j−1)δ
dz n(αγ , θ(k); r, z), (37)

PN (αN , k), D =
1

qN (k,D)

∏
i,j

exp[−βπ(i, j)n(αN , k; i, j)vpN ], (38)

PB(αB , k,D) =
1

qB(k,D)

∏
i,j

exp[−βπ(i, j)n(αB , k; i, j)vpB − β∆Gbindn
e(αB , k; i, 1)]

× exp [−n(αB , k; i, j) (eβψ(i, j) + ln(f(i, j))] , (39)

σγ(k) = σγe
βµγ qγ(k,D), (40)

eβµγ(D) = Asurf/
∑
k

qγ(k,D)∆A(k). (41)

The volume fraction of the counter, co-ions, protons, and hydroxyl ions, ( Eqs.(22), (23), (24), and (25) ), in
discretized space are:

φNa+(i, j) = φNa+,bulk exp(−β(π(i, j)− πbulk)vNa+ − eβψ(i, j)), (42)

φCl−(i, j) = φCl−,bulk exp(−β(π(i, j)− πbulk)vCl− + eβψ(i, j)), (43)

φH+(i, j) = φH+,bulk exp(−β(π(i, j)− πbulk)vH+ − eβψ(i, j)), (44)

φOH−(i, j) = φOH−,bulk exp(−β(π(i, j)− πbulk)vOH− + eβψ(i, j)). (45)

The above volume fractions depend on the lateral pressure, electrostatic potential and on the bulk volume fractions.
The chemical potentials of the ions, protons, and hydroxyl ions are related to their bulk volume fractions.5 These
bulk values are input to the theory.

The discrete form of the degree of dissociation of the acidic lipid is given by

x(i)

1− x(i)
= K


a exp(βµ

H+) exp(βψ(i, z = 0)e), (46)

and the fraction of acidic lipids in the lipid membrane is given by

fl(i)

1− fl(i)
=
e−β(µ



AH−µC)

1− x(i)
, (47)

here ψ(i, z = 0) is the surface electrostatic potential of the lipid membrane surface at (ri, z) = ((i− 1/2)δ, 0).
The discretized Poisson equation, in cylindrical coordinates, is(
1 +

δ

2ri

)
ψ(i+ 1, j)− 4ψ(i, j) +

(
1− δ

2ri

)
ψ(i− 1, j)

+ ψ(i, j + 1) + ψ(i, j − 1) = −εwε0δ2ρq(i, j), (48)

here ri = (i−1/2)δ denotes the middle of the grid cell (i, j) in the radial direction. The above equation only applies
for regular grid cells, i.e., those grid cells not at the boundary with the micellar core. For the split “non-regular”
grid cells close to the micellar core/NP and the boundary condition of the interface of the micellar core we need
to employ a generalized 5-point “stencil” method. Details concerning the constructions of those “stencils” can
be found in Ref.13. The above scheme is computationally complex and difficult to implement; moreover, overall
charge neutrality is not guaranteed. To address this problem and reduce the complexity of the algorithm we applied
an approximation of the micellar electrostatic boundary condition. The electrostatic discontinuity of the micellar
boundary was “ignored” and we combined the charge density of the “split” non-regular grid cells into one regular
cell. Conceptually this means that we “smear” out the charges near the interface of the micellar core. We found that
the difference in free energy computed with both approaches is less then 1% at maximum, clearly demonstrating
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the relative unimportance of the electrostatic boundary condition near the micellar core. On the other hand, the
electrostatic boundary conditions near the lipid membrane are of prime importance as the result presented in the
main paper demonstrate. The discretized electrostatic boundary conditions for the surface (z = 0) read:

ψ(i, 1)− ψ(i, z = 0) = −δεwε0σq(i). (49)

Here ψ(i, z = 0) is the surface electrostatic potential of the lipid membrane surface.
Substituting Eqs. (37), through (45) into the constraint equation (34) and the Poisson Eq. (48) and substituting

of Eqs (47) and (46) into the electrostatic boundary condition of the lipid surface (Eq. 49) results in a set of coupled
nonlinear equations which can be solved by standard numerical methods.14

3 Chain Model

We use the three-state rotational isomeric state (RIS) model of Flory15 in order to generate a representative
sample set of chain conformations. These conformations are generated by a simple sampling procedure that takes
into account the self-avoidance of the polymer chain. Through appropriate translational and rotational adjustments,
the generated chain conformations are end-tethered to the center of a surface element. In doing so, both the surfaces
of the sphere and the external plane are assumed to be non-penetrable by the chain segments. The segment or
monomer length of the polymers and the volume of one polymer segment are l = 0.35nm, vpN = 0.065nm3 for the
neutral PEG polymer and l = 0.35nm, vpB = 0.113nm3 for the polybase polymer respectively. The volume of the
water molecules is vw = 0.03nm3. The proton and hydroxyl atom have a similar volume; vH+ = vOH− = vw. The
anion and cation have a volume of vCl− = vNa+ = 0.0335nm3. We used a discretization length δ = 0.5nm.

One set of chain conformations is generated for both the neutral and polybase and is used for all calculations
reported in this paper. The number of conformations per chain type at each grafting position is 1000000. For a
micellar core radius of R = 2.5nm this amount to 2.8 ∗ 107 chain conformations. Note that this large number of
conformations requires the parallelization of the code.

4 Results
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Figure S2: Free energy versus separation distance between charged polymer grafted planar surface and
membrane at pH = 7.0, 7.5, and 8.0. The condition used for the planar surface are identical to the one used for
the coated micelle. The grafted surface has a surface coverage for both PEG and polybase of σ = 0.20 nm−2. Both
PEG and polybase have n = 20 segments. The polybase has a pKb = 6.5. The intrinsic pKa of the PS lipids is 3.6.
The salt concentration is cs = 0.10M . Because of the planar geometry the free energy presented as the free energy
per polymer chain. The inset in the middle panel shows the same free energy versus distance but on a zoomed out
scale, showing the larger (conformation) repulsion (and divergence at short distances) of the interaction between
the two planar surfaces. Observe also that the effect of pH is greatly diminished: with decreasing pH the free energy
curve only slightly shift to shorter distances.
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Figure S3: Contour map of the distribution of the fraction of charged PS head group of the membrane
lipids: (σC(r)/σ0). The center of the micelle is located at (x, y) = (0, 0) and a distance D − R = 2.0nm above
the the membrane surface. The core of the micelle has a radius of R = 2.5 nm and the surface coverage of both
PEG and polybase is σ = 0.20 nm−2. Both PEG and polybase have n = 20 segments. The polybase has a pKb of
6.5. The salt concentration is cs = 0.10M and pH = 7.5. The intrinsic pKa of the PS lipids is pKa of 3.6. The
lipids under the adhering micelle are in equilibrium with a bulk lipid membrane that possesses 6.5% of lipids with
an acidic headgroup (xPS = σC/σ0 = 0.065).
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Figure S4: Free energy versus separation distance between charged polymer grafted solid nanoparticle
and membrane at pH = 7.0, 7.5, and 8.0. The solid nanoparticle has a radius of R = 2.5 nm and the surface
coverage of both PEG and polybase is σ = 0.20 nm−2. Both PEG and polybase have n = 20 segments. The
polybase has a pKb = 6.5. The intrinsic pKa of the PS lipids is 3.6. The salt concentration is cs = 0.10M .
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Figure S5: Dissociation constant versus pH for a charged micelle interacting with a liquid-like lipid
membrane with different amounts of chargeable PS head-groups. The amount of charge of the PS head-group is
determined by an acid-base equilibrium with an intrinsic pKa of 3.6. All remaining parameters and conditions are
identical to the ones presented in Fig S3.

0 0.05 0.1 0.15 0.2 0.25
x

PS

10
-40

10
-30

10
-20

10
-10

10
0

K
d

is

charge regulation, PS fixed
charge regulation, PS mobile

Figure S6: Dissociation constant versus amount of chargeable PS head-groups for a charged micelle
versus amount interacting with for two different ’types’ of lipid membranes. The black line correspond to
a gel like membrane (charges can not move), whereas the red line correspond to a liquid-like membrane (charges are
mobile). In both cases the amount of charge is determined by an acid-base equilibrium. All remaining parameters
and conditions are identical to the ones presented in Fig S3.

11

Electronic Supplementary Material (ESI) for Biomaterials Science
This journal is © The Royal Society of Chemistry 2013



References

[1] R. J. Nap, Y.-Y. Won and I. Szleifer, Soft Matter, 2012, 8, 1688–1700.

[2] I. Szleifer and M. A. Carignano, Adv. Chem. Phys., 1996, 94, 165–260.

[3] J. Schwinger, L. L. DeRaad, Jr., K. A. Milton and W.-Y. Tsai, Classical Electrodynamics, Persus Books,
Reading Massachusetts, 1998.

[4] E. Raphael and J. Joanny, Europhys. Lett., 1990, 13, 623–628.

[5] R. Nap, P. Gong and I. Szleifer, J. Polym. Sci., Part B: Polym. Phys., 2006, 44, 2638–2662.

[6] G. Longo and I. Szleifer, Langmuir, 2005, 21, 11342 – 11351.

[7] G. S. Longo, D. H. Thompson and I. Szleifer, Langmuir, 2008, 24, 10324 – 10333.

[8] S. May, D. Harries and A. Ben-Shaul, Biophys. J., 2000, 79, 1747 – 1760.

[9] E. Mbamala, A. Fahr and S. May, Langmuir, 2006, 22, 5129–5136.

[10] B. W. Ninham and V. A. Parsegian, J. Theor. Biol., 1971, 31, 405–0428.

[11] C. Fleck, R. Netz and H. H. von Grünberg, Biophys. J., 2002, 82, 76–92.

[12] I. Szleifer and M. A. Carignano, Macromol. Rapid Commun., 2000, 21, 423–448.

[13] A. R. Mitchell and D. F. Griffiths, The Finite Difference Method in Partial Differential Equations, Wiley,
Chichester, 1980.

[14] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker and C. S. Woodward, ACM
Trans Math Software, 2005, 31, 363–396.

[15] P. J. Flory, Statistical Mechanics of Chain molecules, Wiley-Interscience, New York, 1969.

12

Electronic Supplementary Material (ESI) for Biomaterials Science
This journal is © The Royal Society of Chemistry 2013


