Supporting Information:

Nucleic Acid-directed Self-assembly of Multifunctional Gold Nanoparticle Imaging Agents¹

Ziyan Zhang,[†] Yongjian Liu,[‡] Chad Jarreau,[‡] Michael J. Welch,[‡] and John-Stephen A. Taylor*[†]

[†]Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130,

United States, and [‡]Mallinckrodt Institute of Radiology, Washington University School of

Medicine, St. Louis, Missouri 63110, United States

*E-mail: taylor@wuchem.wustl.edu

¹ This work is dedicated to Dr. Michael J. Welch, who passed away on May 6th, 2012.

Figure	Page
Figure S1. Determination of the molar absorption coefficients of the gold	S2
nanoparticles .	
Figure S2. Determination of the average ODN loading of ODN·AuNP.	S3
Figure S3. A) Temperature-dependent fluorescence curves for A) Cy5-	S4
PNA·ODN-AuNP and B) Cy5-PNA.	
Figure S4. Van't Hoff analysis of the melting temperature curve to yield	S5
ΔH and ΔS for PNA•ODN duplex formation with free ODN and ODN-	
AuNP.	

Figure S1. Determination of the molar absorption coefficients of the gold nanoparticles . A) Absorbance was measured as a function of concentration at the absorption maximum of 520 nm for the citrate•AuNP, and at 524 nm for the ODN-AuNP. The concentration of the particles was calculated as described in the experimental section. B) Molar extinction coefficient spectra for citrate-AuNP and ODN-AuNP.

Figure S2. Determination of the average ODN loading of ODN·AuNP. A) Gel electrophoresis of ³²P-labeled ODN of known concentration and ³²P-labeled ODN from cyanide treatment of ODN·AuNP that were titrated with a known concentration of PNA-DOTA. B) Calibration curve generated from lanes 1-6 of A).

Figure S3. A) Temperature-dependent fluorescence curves for A) Cy5-PNA·ODN-AuNP and B) Cy5-PNA. Excitation was carried out at 633 nm and emission was detected at 663 nm. The high fluorescence in the first heating curve (25-80-1) is likely an artifact.

Figure S4. Van't Hoff analysis of the melting temperature curve to yield ΔH and ΔS for PNA•ODN duplex formation with free ODN and ODN-AuNP. The fraction single strand data from Figure 6 were converted to K_{eq} values taking into account the concentration of ODN and PNA used. The Keq values were then converted to ΔG values in calories and plotted against T in degrees Kelvin. The slope from a linear fit to the data gave ΔS° in cal/deg-mol and ΔH° in calories.