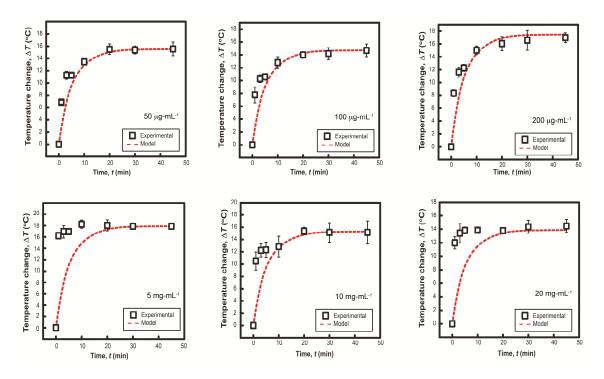
Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2014


Supporting Information

for

Photoresponsive hydrogel networks using melanin nanoparticle photothermal sensitizers

By

Chi Ninh, Madeline Cramer, and Christopher J Bettinger

Figure S1. Temporal evolution of photothermal heating of MelNP dispersions with different concentrations ranging from 50 μ g-mL⁻¹ to 20 mg-mL⁻¹. The predicted transient temperature profiles matched that of experimentally determined values at low concentrations of MelNP (\leq 5 mg-mL⁻¹). However, the temporal temperature profiles deviated significantly from experimental observations as the MelNP concentration was increased (See Text).

Detailed Calculations of Photo-Induced Heating of Melanin Nanoparticle Dispersions

MelNPs dispersions and MelNP-loaded hydrogels are prepared in scintillation vials to facilitate formation and optical thermal characterization. The heating rate of photo-induced aqueous melanin nanoparticle dispersions was determined by

$$\sum_{i} m_{i} C_{p,i} \frac{dT}{dt} = Q_{in} - Q_{out}$$
 Eqn. S1

In this equation, m_i and $C_{p,i}$ represent the mass and heat capacity of component i, T represents the temperature of the aqueous dispersion. The value of m_{H2O} and $C_{p,H2O}$ were taken as 1 g per mL and 4.18 J-g⁻¹K⁻¹ respectively. The value of m_{MelNP} varies with MelNP concentration while 2.51 J-g⁻¹K⁻¹ was used as the value of $C_{p,MelNP}$. The rate of energy supplied was calculated using Eqn 2.

$$Q_{in}(z) = \frac{dI(z)}{dz}$$
 Eqn. S2

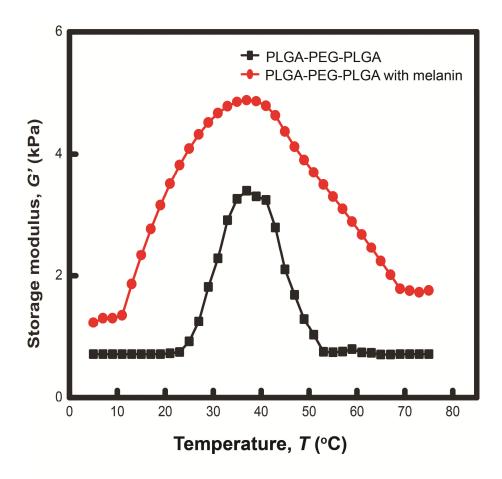
The absorbed light intensity is calculated using the following relationship derived from the Beer-Lambert law.

$$I = I_0 (1 - e^{-\beta z})$$
 Eqn. S3

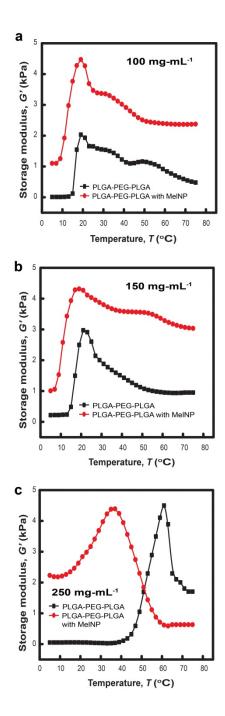
 I_0 was measured to be 10.8 mW-m⁻². The value of β was estimated using the following input parameters for Mie scattering (reference 34 in main text). Briefly, the refractive index mismatch ratio (n_{MelNP}/n_{water}) and the size parameter $(x = 2\pi D_{MelNP}/(\lambda/n_{water}))$ were calculated. The indices of refraction of melanin and water are given by $n_{MelNP} = 1.3$ and $n_{water} = 1.33$, respectively. The value N_{MelNP} represents the number density of MelNP nanoparticles in solution assuming a spherical particle of diameter $D_{MelNP} = 2R_g = 200$ nm. This calculation uses a melanin mass density of 1.68 g-cm⁻³ (reference 28 in main text). We used an algorithm to calculate the efficiency of scattering Q_s (reference 40 in the main text). Briefly, the algorithm was based on the following equation:

$$Q_s = \frac{2}{x^2} \sum_{n=1}^{N} (2n+1)(|a_n|^2 + |b_n|^2)$$
 Eqn. S4

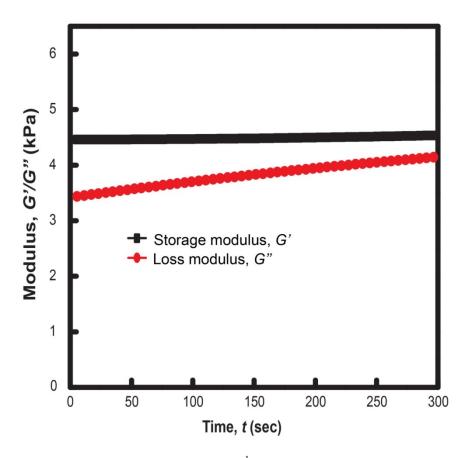
where the complex Mie coefficients a_n and b_n were functions depending on x and the complex refractive index¹. The output values of β ($Q_sSA_{MelNP}N_{MelNP}$) are summarized in **Table S1**.

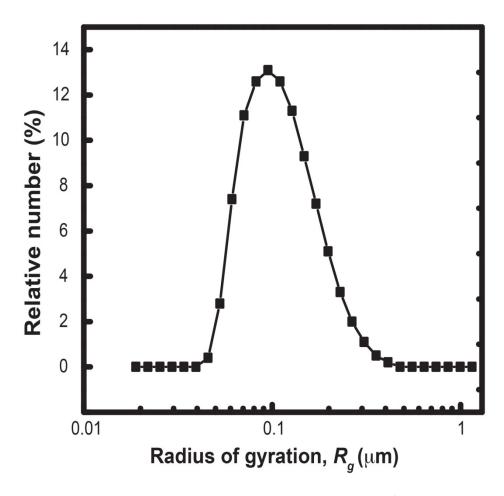

Table S1. Scattering coefficients used for aqueous melanin dispersions as a function of melanin nanoparticle concentration.

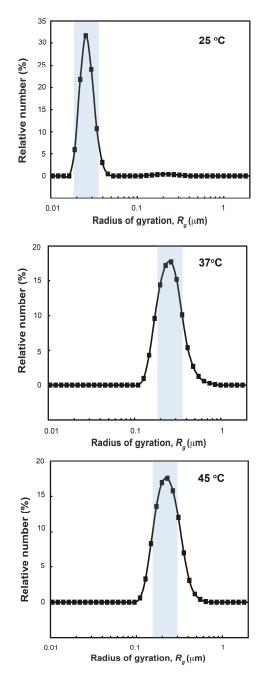
$MeINP$ conc, c_{MeINP} (mg-mL $^{-1}$)	0.05	0.1	0.2	1	5	10	20
Scattering coefficient $\beta \times 10^{-2}$ (cm ⁻¹)	0.1090	0.1109	0.1330	0.160	0.747	1.254	2.259

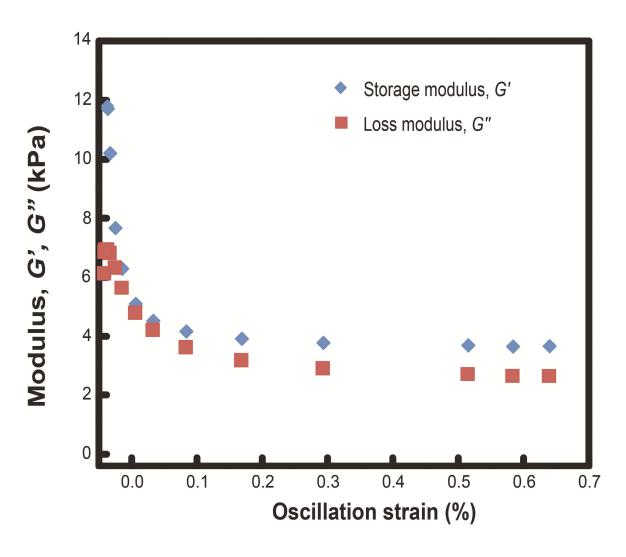

Heat loss was dominated by radial thermal conduction through the walls of the glass vials. The rate of heat loss Q_{out} is calculated using Eqn 4:

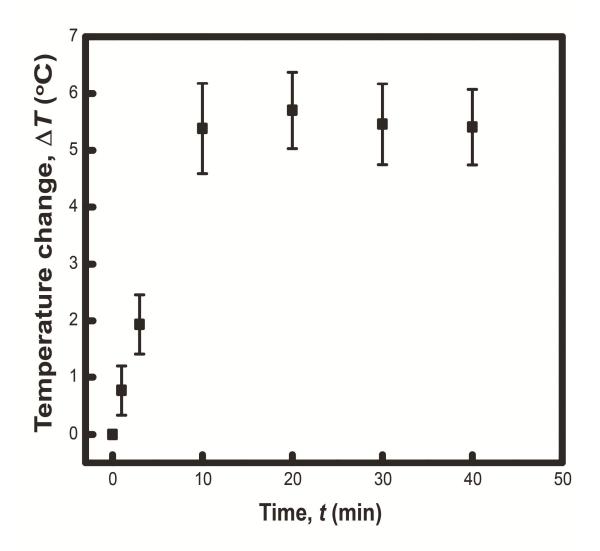
$$Q_{out} = -k_{SiO_2} S \frac{dT}{dr_{shell}}$$
 Eqn. 4


In this expression, k_{SiO2} represents the heat transfer coefficient of silicon oxide $(1 \text{ W-m}^{-1}\text{-K}^{-1})^2$, S is the surface area of conduction and r_{shell} is the coordinate within the silicon oxide shell between the inner (R_{in}) and outer radii (R_{out}) of the conduction path where $|R_{out} - R_{in}| << R_{in}$. The symbol k_{SiO2} represents the heat transfer coefficient of silicon oxide $(1 \text{ W-m}^{-1}\text{-K}^{-1})$. The inner (R_{in}) and outer (R_{out}) radii was measured to be 1.59 cm and outer radii (R_{out}) was 1.68 cm.


Figure S2. Phase transition behavior of hydrogel formed from 200 mg-mL⁻¹ PLGA-PEG-PLGA concentrations. Loading MelNP expands the gel transition of the hydrogel by accelerating sol-gel transition and retarding precipitation (See Text).


Figure S3. Phase transition behavior of hydrogel formed from different PLGA-PEG-PLGA concentrations: a) 100 mg-mL⁻¹, b) 150 mg-mL⁻¹, and c) 250 mg-mL⁻¹ with and without 1 mg-mL⁻¹ MelNP. Loading MelNP expands the gel transition of the hydrogel by accelerating sol-gel transition and retarding precipitation (See Text).


Figure S4. Hydrogel formed from 200 mg-mL⁻¹ solution of PLGA-PEG-PLGA doped with 1mg-mL⁻¹ MelNP was exposed to UV light. No change in G' was observed over irradiation time, suggesting that the decrease in G' of PLGA-PEGPLGA hydrogel with embedded MelNP (Fig. 7) resulted from the photothermal response of the MelNP. A slight increase of G" was observed possibly due to dehydration of the hydrogel during UV irradiation time.


Figure S5. Size distribution of MelNP at concentration 1 mg-mL⁻¹ was measured by dynamic light scattering.

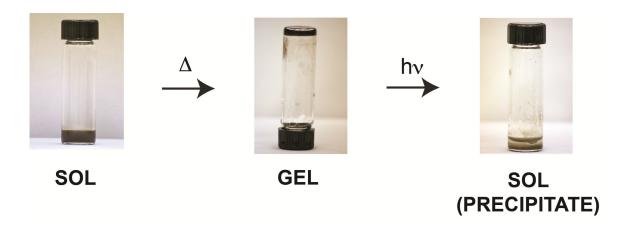

Figure S6. Size distribution of pristine PLGA-PEG-PLGA micelles was measured by dynamic light scattering at 25, 37, and 45 $^{\circ}$ C.

Figure S7. Amplitude sweep of hydrogel PLGA-PEG-PLGA doped with 1mg-mL⁻¹ MelNP at ω = 5rad/s shows that the parameter chosen (0.5% strain) is in the linear viscoelastic regime.

Figure S8. Photothermal response of hydrogel formed from 200 mg-mL⁻¹ PLGA-PEG-PLGA to UV irradiation shows an increase of 5.4 ± 0.6 °C. This temperature increase is significantly smaller compared to the increase of 20.4 ± 0.1 °C that is achievable with aqueous dispersions of 1 mg-mL⁻¹ MelNP (Fig.3).

Figure S9. Photographic images of hydrogel formed from 200 mg-mL⁻¹ PLGA-PEG-PLGA doped with 1 mg-mL⁻¹ MelNP undergoing phase transitions from SOL to GEL to PRECIPITATE after UV irradiation for 30 minutes.

Table S2. The total free energy of adsorption of PLGA-PEG-PLGA to MelNP ($\Delta G_{ads,vol}$) was calculated and compared to the competing process of gelation (ΔG_{gel}). This calculation is

consistent with the trends in gelation versus MelNP concentration (See Text).

MelNP Concentration	$\Delta G_{ads,vol} (\text{J-mL}^{-1})^{\text{a}}$	$\Delta G_{gel} (\text{J-mL}^{-1})^{\text{b}}$	Gel formation
c_{MelNP} (mg-mL ⁻¹)			
0.05	-0.05	-6.1	Yes
0.1	-0.11	,,	Yes
0.2	-0.22	,,	Yes
1	-1.08	,,	Yes
5	-5.34	,,	Yes
10	-16.1	,,	No
20	-32.3	"	No

^aCalculated from Eqns. 5 and 6 of main text.

Additional References

- W. J. Wiscombe, Applied optics, 1980, 19, 1505-1509. 1.
- 2. N. P. Bansal and R. H. Doremus, Handbook of glass properties, 1986.

^bConstant value for all compositions. Taken from reference 45 of main text.