Supplementary Information

Photo-regulation of Constitutive Gene Expression in Living Cells by Using of Ultrafast Photo-cross-linking Oligonucleotides

Takashi Sakamoto, Atsuo Shigeno, Yuichi Ohtaki, and Kenzo Fujimoto*

Experimental Procedures

Preparation of oligonucleotides: Oligoribonucleotides were purchased from Fasmac (Japan). Phosphorothioate oligodeoxyribonucleotides were synthesized by an automatic DNA synthesizer (3400 DNA synthesizer, Applied BioSystems) and purified by a reversed-phase HPLC (JASCO PU-980, HG-980-31, DG-980-50, UV-970 system equipped with an InertSustainTM C18 column (GL Science, 5 μ m, 10 × 150 mm)). Preparation of oligonucleotides was confirmed by MALDI-TOF-MS (see Supporting Information Table S2). Phosphoramidite of ^{CNV}K was synthesized according to a method described in the literature.¹

Cell culture and transfection of AS-ODNs and siRNA: GFP stable cell line (GFP-HeLa) was purchased from Cell Biolabs, Inc. (CA, USA). Cells were cultured in Dulbecco's MEM (10% fetal bovine serum, 100 U/ml penicillin, 100 μ g/ml streptomycin) in a humidified chamber (37°C, 5% CO₂). Cells were trypsinized and resuspended in Opti-MEM without antibiotics and transferred to 96-well plate at a density of 2×10^4 cells per well in a volume of 100 μ l and incubate for 24 h (37°C, 5% CO₂) before antisense treatment. Transfection of K-ASs was carried out using Lipofectamine RNAi Max (Invitrogen) according to the manufacture's procedure. After the transfection, cells were cultured in Dulbecco's MEM (10% fetal bovine serum, 100 U/ml penicillin, 100 μ g/ml streptomycin) and in a humidified chamber (37°C, 5% CO₂).

Photoirradiation: Before the photoirradiation, cell culture medium was replaced to PBS. Photoirradiation was performed by a UV-LED light source (1600 mW/cm², Z-UV, OMRON, Japan). After the photoirradiation, cell culture medium was replaced to Dulbecco's MEM (10% fetal bovine serum, 100 U/ml penicillin, 100 μ g/ml streptomycin) and then cultured in a humidified chamber (37°C, 5% CO₂).

Quantification of mRNA: Two hours after the photoirradiation, total RNA was extracted using CellAmpTM Direct RNA Prep Kit (Takara, Japan) and reverse transcription was

performed by the PrimeScript® RT reagent Kit (Takara, Japan) according to the manufacturer's procedure. Resulting cDNA was subjected to real-time PCR using an automated real-time PCR system (Smart Cycler®, Takara, Japan) with SYBR Premix Ex Tag II perfect real time (Takara, Japan) and 0.4 µM of primers (For GFP: forward; ATGGTGAGCAAGGGCGAG, reverse; GTGGTGCAGATGAACTTC (for AS-a), CAACAGCCACAACGTCTATATC, forward; reverse; AACTCCAGCAGGACCATGTGAT (for AS-b,c,d),For β -actin: forward; CTGGCACCACACCTTCTACA, reverse; AGCACAGCCTGGATAGCAAC, For SIN3B: forward; TTCAACAACGCCATCAGCTA, reverse; GGCAGGAACTGTCCAAACTC). Quantity of GFP, β -actin and SIN3B mRNA was estimated from the change in C_T values with the normalization using the amounts of GAPDH mRNA estimated from real-time RT-PCR with a GAPDH primer set (forward; CATGCCAGTGAGCTTCCCGTT, reverse; GTGGAGTCTACTGGCGTCTTC).

Confocal laser scanning fluorescence microscopy: After the transfection of AS-ODN, 10 sec of photoirradiation was performed and the cells were cultured for 24 h. Fluorescence image of the cells were obtained by a confocal laser-scanning microscope (C2Si, Nikon, Japan) with 488 nm laser excitation and 525 nm detection and 30 µm pinhole radius.

Name	Target region	Sequences ^a	Calcd. [(M+H) ⁺]	Found
cORN-a	14 – 38	^{3°} <u>U</u> GGU <u>G</u> GGGCCAC <u>U</u> UGUCGAGGAGCG ^{5°}		
AS-a		^{5'} ACCACCCCGGTGAACAGCTCCTCGC ^{3'}	7913.73	7913.48
K-AS-a1		^{5'} AXCACCCCGGTGAACAGCTCCTCGC ^{3'}	8020.77	8020.51
K-AS-a2		^{5'} ACCACCCCGGTGAXCAGCTCCTCGC ^{3'}	7996.76	7997.45
K-AS-a3		^{5'} ACCACXCCGGTGAACAGCTCCTCGC ^{3'}	8020.77	8018.87
K-AS inv		^{5'} CGCTCCTCGACAAGTGGCCCCACXA ^{3'}	8020.77	8019.69
cORN-b	471 – 495	^{3°} <u>U</u> CAAGUGGAAC <u>U</u> ACGGCAAGAAGAC ^{5°}		
AS-b		^{5'} AGTTCACCTTGATGCCGTTCTTCTG ^{3'}	7995.72	7996.88
K-AS-b1		^{5'} AXTTCACCTTGATGCCGTTCTTCTG ^{3'}	8037.74	8037.41
K-AS-b2		^{5'} AGTTCACCTTGAXGCCGTTCTTCTG ^{3'}	8062.75	8063.08
cORN-c	542 – 566	^{3'} <u>U</u> ACCCCCACAAGACGACCAUCACCA		
AS-c		^{5'} ATGGGGGTGTTCTGCTGGTAGTGGT ^{3'}	8211.74	8216.00
K-AS-c1		^{5'} AXGGGGGTGTTCTGCTGGTAGTGGT	8303.78	8300.48
cORN-d	592 – 616	^{3'} <u>U</u> GACCCACGAG <u>U</u> CCAUCACCAACAG ^{5'}		
AS-d		^{5'} ACTGGGTGCTCAGGTAGTGGTTGTC ^{3'}	8140.74	8140.82
K-AS-d1		^{5'} AXTGGGTGCTCAGGTAGTGGTTGTC ^{3'}	8247.78	8247.92
K-AS-d2		^{5'} ACTGGGTGCTCAXGTAGTGGTTGTC ^{3'}	8207.77	8209.54

 Table S1. Sequence and MALDI-TOF-MS analysis of the synthetic oligonucleotides using this

 study

 a "X" and under bar indicate $^{\text{CNV}}\text{K}$ and photo-cross-linking site, respectively.

Duplex	<i>T_M</i> / °C	Duplex	<i>T_M</i> / °C	Duplex	<i>T_M</i> / °C
AS-a/cORN-a	69.4 ± 0.6	AS-b/cORN-b	55.6 ± 0.6	AS-d/cORN-d	59.3 ± 0.6
K-AS-a1/cORN-a	67.0 ± 0.5	K-AS-b1/cORN-b	52.3 ± 0.4	K-AS-d1/cORN-d	58.6 ± 0.4
K-AS-a2/cORN-a	64.5 ± 0.5	K-AS-b2/cORN-b	51.1 ± 0.4	K-AS-d2/cORN-d	57.6 ± 0.6
K-AS-a 3/cORN-a	65.8 ± 0.8	AS-c/cORN-c	67.3 ± 0.0		
K-AS inv/cORN-a	n.d. ^b	K-AS-c1/cORN-c	65.4 ± 0.3		

Table S2. Melting temperature (T_M) of K-ASs with its complementary ORNs.^{*a*}

 ${}^{a}T_{M}$ values were determined from UV melting curves of the duplex ([Duplex] = 0.5 μ M in 50 mM soduim cacodylate (pH 7.4) containing 100 mM NaCl). b Not determined.

Figure S1. Denaturing PAGE analysis of the photo-cross-linking reaction of K-AS-a1, -a2, -a3 and inv with cORN-a. PAGE analyses were performed on 15% polyacrylamide gel containing 7M urea and 25% formamide. "M" indicates 10 bp ladder marker. Hetero-duplexes ([AS-ODN] = [cORN] = 2μ M in PBS) were irradiated (366 nm) at 37°C.

Figure S2. Secondary structure of GFP mRNA calculated by mfold² and the target site of the AS-ODNs.

Figure S3. Relative amount of β -actin (a) and SIN3B (b) mRNA in GFP-HeLa cells before and after the photoirradiation with K-AS-a1 treatment ([antisense] = 100 nM, photoirradiation: 366 nm, 10 sec)

Figure S4. Cell viability (a) and relative amount of pyrimidine (6-4) pyrimidone photoproducts (6-4 PP) (b) in GFP-HeLa cells as a function of irradiation time. Cell viability was estimated by WST-1 assay 48 h after the photoirradiation. The amount of 6-4 PP was measured by ELISA kit (Cell Biolabs, CA) 48 h after the photoirradiation according to a manufacture's protocol.

Figure S5. Relative amount of GFP mRNA in GFP-HeLa cells after the treatment of siRNA targeting GFP mRNA ([siRNA] = 100 nM, siRNA (sense); 5'-GCAAGCUGACCCUGAAGUUCA U-3', siRNA (antisense); 5'-GAACUUCAGGGUCAGCUUGCCG-3')

References

- 1. Y. Yoshimura, K. Fujimoto, Org. Lett., 2008, 10, 3227.
- 2. M. Zuker, Nucleic Acids Res., 2003, 31, 3406.