Supplementary Information

Photo-regulation of Constitutive Gene Expression in Living Cells by Using of Ultrafast Photo-cross-linking Oligonucleotides

Takashi Sakamoto, Atsuo Shigeno, Yuichi Ohtaki, and Kenzo Fujimoto*

Experimental Procedures

Preparation of oligonucleotides: Oligoribonucleotides were purchased from Fasmac (Japan). Phosphorothioate oligodeoxyribonucleotides were synthesized by an automatic DNA synthesizer (3400 DNA synthesizer, Applied BioSystems) and purified by a reversed-phase HPLC (JASCO PU-980, HG-980-31, DG-980-50, UV-970 system equipped with an InertSustain ${ }^{\text {TM }} \mathrm{C} 18$ column (GL Science, $5 \mu \mathrm{~m}, 10 \times 150 \mathrm{~mm}$)). Preparation of oligonucleotides was confirmed by MALDI-TOF-MS (see Supporting Information Table S2). Phosphoramidite of ${ }^{\mathrm{CNV}} \mathrm{K}$ was synthesized according to a method described in the literature. ${ }^{1}$

Cell culture and transfection of AS-ODNs and siRNA: GFP stable cell line (GFP-HeLa) was purchased from Cell Biolabs, Inc. (CA, USA). Cells were cultured in Dulbecco's MEM (10% fetal bovine serum, $100 \mathrm{U} / \mathrm{ml}$ penicillin, $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin) in a humidified chamber $\left(37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}\right)$. Cells were trypsinized and resuspended in Opti-MEM without antibiotics and transferred to 96 -well plate at a density of 2×10^{4} cells per well in a volume of $100 \mu \mathrm{l}$ and incubate for $24 \mathrm{~h}\left(37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}\right)$ before antisense treatment. Transfection of K-ASs was carried out using Lipofectamine RNAi Max (Invitrogen) according to the manufacture's procedure. After the transfection, cells were cultured in Dulbecco's MEM (10% fetal bovine serum, $100 \mathrm{U} / \mathrm{ml}$ penicillin, $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin) and in a humidified chamber $\left(37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}\right)$.

Photoirradiation: Before the photoirradiation, cell culture medium was replaced to PBS. Photoirradiation was performed by a UV-LED light source ($1600 \mathrm{~mW} / \mathrm{cm}^{2}$, Z-UV, OMRON, Japan). After the photoirradiation, cell culture medium was replaced to Dulbecco's MEM (10% fetal bovine serum, $100 \mathrm{U} / \mathrm{ml}$ penicillin, $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin) and then cultured in a humidified chamber $\left(37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}\right)$.

Quantification of mRNA: Two hours after the photoirradiation, total RNA was extracted using CellAmp ${ }^{\mathrm{TM}}$ Direct RNA Prep Kit (Takara, Japan) and reverse transcription was
performed by the PrimeScript ${ }^{\circledR}$ RT reagent Kit (Takara, Japan) according to the manufacturer's procedure. Resulting cDNA was subjected to real-time PCR using an automated real-time PCR system (Smart Cycler®, Takara, Japan) with SYBR Premix Ex Taq II perfect real time (Takara, Japan) and $0.4 \mu \mathrm{M}$ of primers (For GFP: forward; ATGGTGAGCAAGGGCGAG, reverse; GTGGTGCAGATGAACTTC (for AS-a), forward; CAACAGCCACAACGTCTATATC, reverse; AACTCCAGCAGGACCATGTGAT (for AS-b,c,d), For β-actin: forward; CTGGCACCACACCTTCTACA, reverse; AGCACAGCCTGGATAGCAAC, For SIN3B: forward; TTCAACAACGCCATCAGCTA, reverse; GGCAGGAACTGTCCAAACTC). Quantity of GFP, β-actin and SIN3B mRNA was estimated from the change in C_{T} values with the normalization using the amounts of GAPDH mRNA estimated from real-time RT-PCR with a GAPDH primer set (forward; CATGCCAGTGAGCTTCCCGTT, reverse; GTGGAGTCTACTGGCGTCTTC).

Confocal laser scanning fluorescence microscopy: After the transfection of AS-ODN, 10 sec of photoirradiation was performed and the cells were cultured for 24 h . Fluorescence image of the cells were obtained by a confocal laser-scanning microscope (C2Si, Nikon, Japan) with 488 nm laser excitation and 525 nm detection and $30 \mu \mathrm{~m}$ pinhole radius.

Table S1. Sequence and MALDI-TOF-MS analysis of the synthetic oligonucleotides using this study

Name	Target region	Sequences ${ }^{\text {a }}$	Calcd. $\left[(\mathrm{M}+\mathrm{H})^{+}\right]$	Found
cORN-a	14-38	${ }^{3}$ UGGUGGGGCCACUUGUCGAGGAGCG ${ }^{5 \times}$		
AS-a		5' ACCACCCCGGTGAACAGCTCCTCGC ${ }^{3}$	7913.73	7913.48
K-AS-a1			8020.77	8020.51
K-AS-a2		5' ACCACCCCGGTGAXCAGCTCCTCGC ${ }^{3}$	7996.76	7997.45
K-AS-a3		5' ACCACXCCGGTGAACAGCTCCTCGC ${ }^{3 \prime}$	8020.77	8018.87
K-AS inv		${ }^{5 \prime}$ CGCTCCTCGACAAGTGGCCCCACXA ${ }^{3 \prime}$	8020.77	8019.69
cORN-b	471-495	3 UCAAGUGGAACUACGGCAAGAAGAC ${ }^{5}$		
AS-b		${ }^{5 \times}$ AGTTCACCTTGATGCCGTTCTTCTG ${ }^{3}$	7995.72	7996.88
K-AS-b1		${ }^{5 \times}$ AXTTCACCTTGATGCCGTTCTTCTG ${ }^{3}$	8037.74	8037.41
K-AS-b2		${ }^{5}$ AGTTCACCTTGAXGCCGTTCTTCTG ${ }^{3}$	8062.75	8063.08
cORN-c	542-566	${ }^{3 \prime} \underline{U} A C C C C C A C A A G A C G A C C A U C A C C A{ }^{5}$		
AS-c		${ }^{5 \times}$ ATGGGGGTGTTCTGCTGGTAGTGGT ${ }^{3}$	8211.74	8216.00
K-AS-c1		${ }^{5 \text {. }}$ AXGGGGGTGTTCTGCTGGTAGTGGT ${ }^{3}$	8303.78	8300.48
cORN-d	592-616	3^{3} UGACCCACGAGUCCAUCACCAACAG ${ }^{5}$		
AS-d		${ }^{5 \prime}$ ACTGGGTGCTCAGGTAGTGGTTGTC ${ }^{3 \prime}$	8140.74	8140.82
K-AS-d1		${ }^{5 \text {. }}$ AXTGGGTGCTCAGGTAGTGGTTGTC ${ }^{3 \prime}$	8247.78	8247.92
K-AS-d2		${ }^{5}$ ACTGGGTGCTCAXGTAGTGGTTGTC ${ }^{3 \prime}$	8207.77	8209.54

a " X " and under bar indicate ${ }^{C N V} \mathrm{~K}$ and photo-cross-linking site, respectively.

Table S2. Melting temperature $\left(T_{M}\right)$ of K-ASs with its complementary ORNs. ${ }^{a}$

Duplex	$T_{M} /{ }^{\circ} \mathrm{C}$	Duplex	$T_{M} /{ }^{\circ} \mathrm{C}$	Duplex	$T_{M} /{ }^{\circ} \mathrm{C}$
AS-a/cORN-a	69.4 ± 0.6	AS-b/cORN-b	55.6 ± 0.6	AS-d/cORN-d	59.3 ± 0.6
K-AS-a1/cORN-a	67.0 ± 0.5	K-AS-b1/cORN-b	52.3 ± 0.4	K-AS-d1/cORN-d	58.6 ± 0.4
K-AS-a2/cORN-a	64.5 ± 0.5	K-AS-b2/cORN-b	51.1 ± 0.4	K-AS-d2/cORN-d	57.6 ± 0.6
K-AS-a 3/cORN-a	65.8 ± 0.8	AS-c/cORN-c	67.3 ± 0.0		
K-AS inv/cORN-a	n.d. ${ }^{b}$	K-AS-c1/cORN-c	65.4 ± 0.3		

${ }^{a} T_{M}$ values were determined from UV melting curves of the duplex ([Duplex] $=0.5 \mu \mathrm{M}$ in 50 mM soduim cacodylate (pH 7.4) containing 100 mM NaCl$).{ }^{b}$ Not determined.

Figure S1. Denaturing PAGE analysis of the photo-cross-linking reaction of K-AS-a1, $-\mathrm{a} 2,-\mathrm{a} 3$ and inv with cORN-a. PAGE analyses were performed on 15% polyacrylamide gel containing 7 M urea and 25% formamide. " M " indicates 10 bp ladder marker. Hetero-duplexes ($[\mathrm{AS}-\mathrm{ODN}]=[\mathrm{cORN}]=$ $2 \mu \mathrm{M}$ in PBS) were irradiated (366 nm) at $37^{\circ} \mathrm{C}$.

Figure S2. Secondary structure of GFP mRNA calculated by mfold ${ }^{2}$ and the target site of the AS-ODNs.

Figure S3. Relative amount of β-actin (a) and SIN3B (b) mRNA in GFP-HeLa cells before and after the photoirradiation with K-AS-a1 treatment ([antisense] $=100 \mathrm{nM}$, photoirradiation: 366 nm , 10 sec)

Figure S4. Cell viability (a) and relative amount of pyrimidine (6-4) pyrimidone photoproducts (6-4 PP) (b) in GFP-HeLa cells as a function of irradiation time. Cell viability was estimated by WST-1 assay 48 h after the photoirradiation. The amount of 6-4 PP was measured by ELISA kit (Cell Biolabs, CA) 48 h after the photoirradiation according to a manufacture's protocol.

Figure S5. Relative amount of GFP mRNA in GFP-HeLa cells after the treatment of siRNA targeting GFP mRNA ([siRNA] $=100 \mathrm{nM}$, siRNA (sense); 5'-GCAAGCUGACCCUGAAGUUCA U-3', siRNA (antisense); 5'-GAACUUCAGGGUCAGCUUGCCG-3')

References

1. Y. Yoshimura, K. Fujimoto, Org. Lett., 2008, 10, 3227.
2. M. Zuker, Nucleic Acids Res., 2003, 31, 3406.
