Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2014

SUPPORTING INFORMATION

Urchin-like Ce/Tb co-doped GdPO₄ hollow spheres for in vivo luminescence/X-ray bioimaging and drug delivery

Zhigao Yi, ^{a,b} Wei Lu, ^c Chao Qian, ^a Tianmei Zeng, ^a Lingzhen Yin, ^a Haibo Wang, ^{a,b} Ling Rao, ^{a,b} Hongrong Liu, ^a Songjun Zeng ^{*,a}

a College of Physics and Information Science and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of

the Ministry of Education, Hunan Normal University, Changsha, Hunan, People's Republic of China. Email: songjunz@hunnu.edu.cn

b Faculty of Materials, Optoelectronics and Physics, Key Laboratory of Low-dimensional Materials and Application Technology

(Ministry of Education), Xiangtan University, Xiangtan 411105, People's Republic of China.

 $c\ Department\ of\ Applied\ Physics\ and\ Materials\ Research\ Center,\ The\ Hong\ Kong\ Polytechnic\ University,\ Hong\ Kong.$

Movie S1. The 3D *in vivo* X-ray bioimaging of the GdPO₄:Ce/Tb hollow spheres. The images were captured by the multimodal animal rotation system (MARS, per 10° ranging from 0 to 360°) and exported as a video at 5 frames per second.

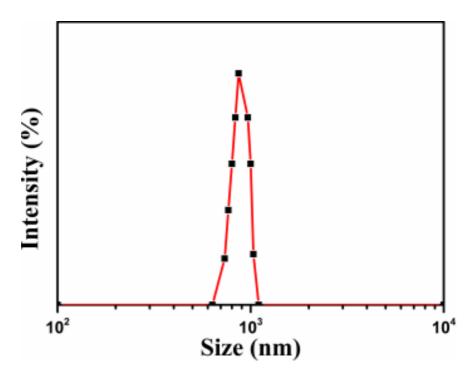


Figure S1. Diameter distribution determined by dynamic light scattering

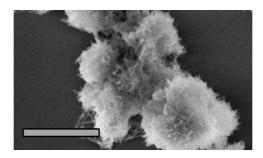


Figure S2. FE-SEM image of the $GdPO_4$:Ce/Tb hollow spheres after releasing the drug. The scale bar is 1000 nm.