Overcoming tumor resistance to cisplatin through micelles mediated combination chemotherapy

Dongfang Zhou,^{*a*} Yuwei Cong,^{*a,b*} Yanxin Qi,^{*a*} Shasha He,^{*a,b*} Hejian Xiong,^{*a,b*} Yanjuan Wu,^{*a,b*} Zhigang Xie,^{*a*} Xuesi Chen,^{*c*} Xiabin Jing,^{*a*} and Yubin Huang^{**a*}

^a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,

Changchun, 130022, PR China

^b University of Chinese Academy of Sciences, Beijing 100049, PR China

^c Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun

130022, PR China

* Correspondence author. Tel & Fax: +86-431-85262769; E-mail: <u>ybhuang@ciac.ac.cn</u>

CONTENTS

Fig. S1 IR Spectra of Canthaplatin
Fig. S2 ¹H NMR of Canthaplatin
Fig. S3 ESI-MS of Canthaplatin
Table S1 Elemental Analysis of Canthaplatin
Fig. S4 Ligand Exchange Reactions of Canthaplatin
Table S2 DNA-Pt Adducts Formation
Table S3 IC₅₀ values of cispaltin, canthaplatin and polymer/canthaplatin micelles
Fig. S5 Excretion study of canthaplatin and polymer/canthaplatin micelles
Fig. S6 Bio-distribution of Pt for canthaplatin and polymer/canthaplatin micelles
Table S4 Dosing Information for MTD Studies in KM Mice

Fig. S1 FITR spectra of a) cisplatin, b) complex 1, c) DMC-Pt-DMC and d) canthaplatin.

In Fig. S1 are collected FTIR spectra of cisplatin, complex 1, DMC-Pt and canthaplatin. Complex 1, which is obtained by oxidizing cisplatin with H₂O₂, displays a sharp and intense peak at 3460 cm⁻¹ (OH stretching) and a new Pt-OH stretch at 542 cm⁻¹, respectively, compared with cisplatin. After reacting with demethylcantharidin, the 3460 cm⁻¹ band is weakened, and there appear two peaks (1726 cm⁻¹ and 1645 cm⁻¹) characteristic of the carbonyl groups in coordinated carboxyl groups (1645 cm⁻¹) and free carboxyl groups (1726 cm⁻¹), respectively, confirming the structure of DMC-Pt. Compared with DMC-Pt, the enhanced absorption at 1645 cm⁻¹ of the carbonyl groups and the absorption at 1417 cm⁻¹ of the C-N stretching vibration indicates that DMC-Pt has condensed with Bocpiperazine to afford canthaplatin.

¹H NMR (400 MHz) of canthaplatin in DMSO-d₆ is shown in Fig. S2. Chemical shifts at 6.51 ppm (s, 6H; NH₃), 4.65-4.80 ppm (d, 4H; OCH), 3.15-3.75 ppm (m, 20H; NCH₂, CHCH) and 1.25-1.75 ppm (m, 26H; CH₃, CH₂CH₂) confirm the structure of canthaplatin.

Fig. S3 ESI-MS spectra of a) DMC-Pt and b) canthaplatin.

The measuring ESI-MS spectra of DMC-Pt and canthaplatin are shown in Fig. S3. The major peak at m/z 669.2 in Figure S3a could be attributed to the deprotonated molecular ion of DMC-Pt (negative mode). Also, peak at m/z 1005.4 in Figure S3b corresponded to the deprotonated molecular ion of canthaplatin (negative mode).

$C_{34}H_{56}Cl_2N_6O_{12}Pt$	Anal. Calc.	Found ^a
С	40.56	40.73
Н	5.61	5.57
Ν	8.35	8.40

 Table S1. Elemental Analysis of Canthaplatin

^{*a*} Detected by elemental analyzer.

Fig. S4 Ligand Exchange Reactions of Canthaplatin.

To investigate the ligand exchange reaction of complex **2**, ESI-MS was used to detect the exchanging products. Canthaplatin was incubated with sodium ascorbate (5 mM) for 2 h, and the reacted solutions were detected by ESI-MS. Platinum(II) fragments at m/z 301.1 (positive mode, b) and LB at m/z 353.0 (negative mode, a) were found. According to ligand exchange products in reductive solution, canthaplatin should be reduced to cisplatin (II) and LB directly (Fig. S4).

Formulation	MCF-7	A549	A549/DDP
Cisplatin	33.5 ± 1.2	346.1 ± 2.4	126.5 ± 3.0
Canthaplatin	20.6 ± 0.8	60.8 ± 2.2	36.6 ± 2.1
Polymer/canthaplatin	24.8 ± 0.3	114.9 ± 1.9	75.2 ± 0.8

Table S2. DNA-Pt adducts formation after 6 h incubation (ng Pt/mg DNA)

		A549			A549/DDP		
	24h	48h	72h	24h	48h	72h	
Cisplatin	20.1	6.3	3.6	65.2	87.3	61.2	
Canthaplatin	77.4	26.4	14.4	61.6	51.8	31.9	
Polymer/canthaplatin	56.5	22.7	12.1	43.8	36.2	17.4	

Table S3. IC_{50} values of cispaltin, canthaplatin and polymer/canthaplatin micelles

`

Fig. S5 Excretion study of canthaplatin and polymer/canthaplatin micelles in KM mice after a single intravenous injection (1 mg Pt/kg). Data are expressed as mean \pm standard deviation (n = 3).

Fig. S6 Bio-distribution of Pt in KM mice for canthaplatin and polymer/canthaplatin micelles after 24 h single intravenous injection (1 mg Pt/kg). Data are expressed as mean \pm standard deviation (n = 3).

Dose.	No. of mice	Death
Cisplatin (mg/kg)		
1	3	0
3	3	0
5	3	0
7.5	3	1
10	3	2
Canthaplatin (mg Pt/kg)		
1	3	0
3	3	0
5	3	0
10	3	2
15	3	3
Polymer/canthaplatin (mg Pt/kg)		
1	3	0
3	3	0
5	3	0
10	3	0
15	3	3
Polymer (mg/kg)		
5	3	0
10	3	0
25	3	0
50	3	0
75	3	0
100	3	0

Table S4. Dosing information for MTD studies in KM mice