Supplementary	Table 1. Results of L-C	BMN and other gen	otoxicity assay stud	ies in individua	ls exposed	to dust ^a – n	ew data not i	ncluded in ref. 4	
Exposure subjects, country	Number of participants (sex and age)	Exposure type and measurement	Exposure period or duration	No of BNCs evaluated in L-CBMN	Quality Score	Results a	nd comments	5	Ref.
				stain					
Children exposed to sawdust, Egypt	40 E, 100% men, n.s. 35 C, 100% men, n.s., attending regular school in the same district	Delinquent children exposed to sawdust in handicraft training school	n.s.	n.s.	18/27	L-CBMN MDA (nn Blood ser (ng/ml)	nol/ml) otonin	$\begin{array}{c} \uparrow 2.5 \pm 1 \ vs. \ 6.2 \pm 1.2 \\ \uparrow 2.5 \pm 1.2 \ vs. \ 5.2 \pm 2 \\ \hline \uparrow 32.1 \pm 13.2 \ vs. \ 81.2 \\ \pm 2 \ 5.2 \end{array}$	Koraa ²⁴
Coal miners, two cities, Brazil	71 E, 100% men, 42.75 \pm 8.45 y 57 C, 100% men, 41.51 \pm 15.04 y, same cities not exposed to genotoxins, ionizing radiation, coal, and chemicals	Occupational, mixed coal dust exposure, n.s.	12.63 ± 7.87 y	2000 BNL Giemsa	19/27	L-CBMN Comet ass TBARs (r protein) SOD (U/g	say nm/mg g protein)	$ \uparrow MN \ 3.12 \pm 2.93 \ vs. \\ 7.46 \pm 4.64 \\ \uparrow NB \ 5.17 \pm 3.31 \ vs. \\ 6.10 \pm 4.48 \\ \uparrow NPB \ 5.59 \pm 4.06 \ vs. \\ 12.33 \pm 7.48 \\ \uparrow DI \ 15.53 \pm 8.80 \ vs. \\ 33.69 \pm 28.70 \\ \uparrow DF \ 12.40 \pm 6.18 \ vs. \\ 27.46 \pm 23.75 \\ \downarrow 10.30 \pm 4.81 \ vs. \ 5.94 \\ \pm 1.90 \\ \uparrow 50.26 \pm 25.17 \ vs. \\ 81.60 \pm 14.39 \\ \ \end{tabular} $	Rohr ²⁵
						CAT (U/r	ng protein)	$\downarrow 2.13 \pm 1.31 \text{ vs. } 0.84 \pm 0.87$	
Coal miner workers exposed to coal dust, Russia	143 E, 100% men, 50.11 ± 7.36 y (24–60) 127 C, 100% men, 47.67 ± 8.45 y (25–60)	Occupational, mixed coal dust exposure, n.s.	23.26 ± 9.66 y (4–39)	1000 BNL Giemsa	18/27	L- CBMN Different had highe	↑MN 7.51 ± ↑NPB 2.36 = ↑NB 5.83 ± ↓NDI 2.16 ± ↔ apoptosis 1.04 sub categories r MN levels	$1.83 vs. 11.15 \pm 3.81$ $\pm 1.27 vs. 4.04 \pm 2.82$ $2.55 vs. 7.23 \pm 2.54$ $\pm 0.15 vs. 1.91 \pm 0.19$ $\pm 1.34 \pm 0.55 vs. 1.71 \pm$ s with higher exposure	Sinitsky ²⁶

Workers in a coal mine with pneumoconios is (CWP) and healthy workers, Turkey	23 E-CWP, n.s., 68.27 ± 4.74 y* 29 E, n.s., 34.69 ± 6.03 y* 29 C, n.s., 33.28 ± 5.23 y*	Occupational, mixed coal dust exposure 1.66 mg/m ³ (2 mg/m ³ is no CWP level)	E-CWP 24.04 ± 7.39 y* E 8.86 ± 5.38 y*	1000 BNL Giemsa	16/27	L- CBMN* SCE*	↑E-CWP vs. E+C: 4.64 ± 0.22 vs. 4.75 ± 0.24 ↑E-CWP vs. E and C: 8.81 ± 1.79 vs. 5.73 ± 0.78 vs. 5.61 ± 0.13	Ulker ²⁷
workers in a bituminous coal mine, Turkey	39 E, n.s., 40.02 ± 0.89 y (30–49 y) 34 C, n.s., 39 ± 0.96 y (30–49), managerial jobs	Occupational, mixed coal dust exposure 1.45 mg/m ³ (1.26– 1.75mg/m ³) (2 mg/m ³ is no CWP level)	15.25 ± 0.40 y (10–12 y), 37.5 h per week	1000 BNL Giemsa	16/27	L- CBMN* CA* SCE* The result the expos	$\uparrow 18.91 \pm 0.74 \text{ vs. } 27.17 \pm 1.54$ $\uparrow 1.05 \pm 0.17 \text{ vs. } 5.82 \pm 0.37$ $\uparrow 6.24 \pm 0.12 \text{ vs. } 9.96 \pm 0.28$ ts were significantly correlated with ure duration period	Donbak ²⁸
Workers at the surface in a sub- bituminous open cast coal mine, Colombia	50 E coal transport, 18 E equipment field maintenance, 17 E coal stripping, 15 E coal embarking, n.s., 44.0 \pm 7.5 y 100 C, matched by age and similar socio- economic status, n.s., 43.7 \pm 7.8 y	Occupational, coal dust, n.s.	17.7 ± 6.9 y (5– 30)	2000 BNL Giemsa	18/27	L- CBMN Comet assay	$\uparrow 2.9 \pm 4.0 \text{ vs. } 8.6 \pm 4.8$ $\uparrow TL 14.3 \pm 2.5 \text{ vs. } 23.4 \pm 6.5$ $\uparrow TI \text{ vs. } 2.9 \pm 1.5 13.1 \pm 7.9$ $\uparrow DI 9 \pm 6.4 \text{ vs. } 60 \pm 39.5$	Leon-Mejia ²⁹
Open cast coal mining workers, Northern Colombia	200 E, 100% men, 44.0 ± 7.5 y (24–60) 100 C, 100% men, 43.7 ± 7.8 y (26–60)	Occupational mixed exposure to coal dust containing dust particles, heavy metals and PAHs, n.s.	17.7 ± 6.9 y (5– 30)	2000 BNL Giemsa	17/27	L- CBMN Comet assay Buccal MN L-CBMN Buccal M higher in	 ↑MN in E significantly correlated with exposure ↑Tail DNA % and damage index in E significantly correlated with exposure ↑In E- MN, buds, karryorhexis and kariolysis significantly correlated with exposure higher in E GSTT1+ carriers N, buds and comet assay parameters GSTM1 null carriers 	Espitia- Perez ³⁰

						Buccal M parameter	N, bud, bridge and comet assay s lower in XRCC1 and hOGG1 rriers	
						Buccal n	uclear buds significantly higher in	
						CYP1A1	variant carriers	
						Cell death	in buccal MN higher in GSTT1/M1	
						null carrie	ers	
Refineries	35 E (Co) 100% men	Occupational	Co	2000 BNL	19/27	Cross-Sec	tional Study only MN-MonoN	De Boeck ³¹
workers with	$38.5 \pm 7.7 \text{ v}$	cobalt-containing	$9.9 \pm 8.8 \text{ v}$	Giemsa	19/2/	correlated	with workplace	202000
cobalt (Co)		dust. moderate	(1.0-31.0)			Comet	\leftrightarrow	
exposure from	29 E (WC-Co), 100%	exposure	()			assav	TL: C vs. Co vs. WC-Co: $0.64 \pm$	
Belgium.	men, 40.7 ± 12.4 v		WC-Co 10.3 ±			accury	125 vs 0.71 + 1.38 vs 0.65 + 1.23	
Norway and		Spot urine 20 mg	7.9 v				TD: C vs. Co vs. WC-Co: $0.51 \pm$	
Finland or	35 C. 100% men.	C_0/g creatinine.	(1.0-27.0)				$1.35 vs. TD 0.50 vs. 0.57 \pm 1.24 \pm$	
hard metal	similar socio-economic	equivalent to an					1.44.	
dust (conditions, from five	airborne exposure					TM: C vs. Co vs. WC-Co: $0.34 \pm$	
tungsten	respective plants	$20 \mu g/m^3$, the					$1.47 vs. 0.37 \pm 1.85 vs. 0.40 \pm 1.45$	
carbide	(warehouse, general	current ACGIH				Fpg	\leftrightarrow	
particles in	services, or	TLV-TWA				comet	TL: C vs. Co vs. WC-Co: $0.052 \pm$	
hard	administration), 38.0 \pm					assay	$0.144, 0.007 \pm 0.247, 0.024 \pm 0.096$	
metals) (WC-	8.8 y					-	TD: C vs. Co vs. WC-Co: $0.069 \pm$	
Co) exposure							$0.157, 0.060 \pm 0.197, 0.019 \pm 0.166$	
from Sweden							TM: C vs. Co vs. WC-Co: $0.050 \pm$	
and England							$0.157 \ vs. \ 0.069 \pm 0.218 \ vs. \ 0.022 \pm$	
							0.158	
						L-	\leftrightarrow	
						CBMN	MN in BN: C vs. Co vs. WC-Co:	
							3.9 ± 1.7 vs. 5.3 ± 1.9 vs. 3.8 ± 1.5	
							MN in MonoN: C vs. Co vs. WC-	
							Co: 6.1 ± 1.5 vs. 5.3 ± 1.6 vs. $6.8 \pm$	
							1.7	
						8-	C vs. Co vs. WC-Co: 1.46 ± 1.48 vs.	
						OHdG-	$1.52 \pm 1.69 \ vs. \ 1.63 \pm 1.42$	
						U µmol/		
						mol		
						creatini		
						ne		

Footwear workers, Brazil	29 SBA, 100% men, 27.10 ± 7.07 y, 19 WBA, 100% men, 25 28 ± 4 40 m	Occupational, Footwear worker exposed to	3.98 ± 4.13 y SBA vs. 5.80 ± 4.03 y WBA	2000 BNL Giemsa	15/27	L- CBMN Comet	$\leftrightarrow SBA vs. WBA vs. C: 4.90 \pm 2.34$ vs. 3.88 \pm 1.93 vs. 5.20 \pm 2.33 $\uparrow damage \ frequency \ SBA vs. WBA$	Heuser ³²
	25.36 ± 4.46 y 25 C, 100% men, 30.64 ± 8.76 y	SBA or water based adhesive- WBA and dust, n.s.				(%)	± 1.31 \uparrow damage index (0-800) SBA vs. WBA 8.35 \pm 7.85 vs. 2.13 \pm 2.45, SBA \uparrow vs. C 3.44 \pm 3.24, WBA \downarrow vs. C	
						buccal MN	↔SBA vs. WBA vs. C: 1.15 ± 1.45 vs. 0.69 ± 0.87 vs. 0.62 ± 0.73	
Gulf War I veterans with inhalation only exposure to uranium dust	22 E low exposure, n.s., n.s. 13 E high exposure, n.s., n.s.	Occupational- soldiers Urine conc low exposure<10 μ g U/mg creatinine and high exposure \geq 10 μ g U/mg creatinine 0.012 vs. 7.694 uU	n.s.	2000 BNL Giemsa	14/27	L- CBMN* No signif CA, FISH L-HPRT	\leftrightarrow 31.95 ± 3.35 vs. 32.92 ± 4.05 icant increase in other assay used: I and mutation	Mcdiarmid ³³
Phosphate fertilizer factory, North China	40E, n.s., n.s. 40 C students, from the same city matched by age, gender and smoking, n.s., n.s.	Chronic occupational, mixed exposure in one years measured HF andSiF ₄ 0.5– 0.8mg/m ³ , NH ₃ 0.01–0.05 mg/m ³ , SO ₂ 0.02–0.07 mg/m ³ floating dust <10 µm diameter 0.05–0.20mg/m ³	n.s.	2000 BNL Giemsa	16/27	L- CBMN Increase of 10 years,	↑ 0.91 vs. 0.24 ↑Dicentrics 3 vs. 11 ↑Centric rings 13 vs. 52 ↑Acentric fragments 2 vs. 24 ↔ Translocations 3 vs. 8 ↔ minutes 5 vs. 8 ↑Gaps 6 vs. 85 ↑Chromatid breaks 28 vs. 73 ↑ 0.62 ± 0.54 vs. 1.55 ± 0.71 of damage with exposure period up to then decrease of parameters	Meng ³⁴

Workers with	21 E (Co), 100% men,	Occupational,	n.s.	2000 BNL	16/27	L-	↑ MonoMN (n.a.)	Mateuca,45
cobalt (Co) or	n.s.	cobalt-containing				CBMN	n.s.	De Boeck ³¹
hard metal		dust, moderate		Giemsa		comet ass	ay DNA damage was increased in	
dust (WC-Co)	26 E (WC-Co), 100%	exposure, urine				XRCC1A	rg ²⁸⁰ His	
exposure,	men, n.s.	spot exposure						
Belgium		level				MonoMN	was significantly higher in	
	26 C, 100% men, n.s.	corresponded on				hOGG132	⁵ and XRCC3 ²⁴¹ variants, but not for	
		average to the				hOGG1		
		ACGIH TLV-						
		TWA (20 μg				Urinary 8	-hydroxydeoxyguanosine (8-OHdG)	
		Co/m ³)				and MNC	B were not influenced by the	
						polymorp	hisms in hOGG1, XRCC3 genes	
^a Abbreviations:	B-buccal cells; C-cont	rol; f – female; h – h	ours; L - lymphocyt	es; L-CA – chro	omosome ab	errations in	lymphocytes; L-CBMN – lymphocyte	cytokinesis-
block micronuc	leus assay; L-SCE – lymp	hocyte sister chromat	tid exchange assay; n	n – male; MI – r	nitotic index	k; MN – mie	ronuclei; N – nasal cells; NB – nuclear	r buds; NDI –
nuclear division	index; N-MN – nasal mic	cronucleus assay; NP	B – nucleoplasmic br	ridges; n.s. – not	t specified; (QS –study q	uality score; y – years; MonoN-monor	nucleated cells;
PAHs – polycy	clic aromatic hydrocarbon	s; HPRT – Hypoxant	hine–guanine phosph	oribosyl transfe	erase; CAT–	catalase act	ivity; SOD - superoxide dismutase act	ivity; TBARs –
thiobarbituric a	cid reactive substances; D	I – damage index; DF	F – damage frequency	y; MDA – malor	ndialdehyde	; TL – tail le	ength in μm; TD or TI – tail DNA inter	nsity in %; TM –
tail movement;	↑ significant increase and	↓ significant decrease	e; numbers following	the arrows in b	rackets indi	cate the mea	in ratio; \leftrightarrow no effect.	
Values are give	n as mean \pm SD, if not oth	erwise specified; * m	ean ± SEM; [§] means	calculated from	original res	ults, which	were reported as Log(MN) and Log(SC	СЕ),
respectively.								

Supplem	entary Table 2. Result	s of buccal and nasal m	icronucleus cyt	ome assay and o included in r	other genoto ref. 4	kicity assay stu	dies in individuals exposed to dust ^a –	new data not
Exposure subjects, country	Number of participants (sex and age)	Exposure type and measurement	Exposure period or duration	No of buccal/nasal cells and stain	Quality Score	Results of BMCyt and other assays and comments		Ref.
Coal mine workers, Colombia	100 E, n.s, 44 ± 7.5 y (24–60) 100 C, n.s, 43.7 ± 7.8 y (27–60), same region, genetic background and lifestyle habits no exposure to genotoxins, coal, and cigarettes	Occupational mixed exposure to coal dust Blood trace elements measurement PIXE	17.7 ± 6.9 y (5–30 y)	2000 Giemsa	20/27	Diff Cell death Sub categor higher DNA	$\uparrow MN \ 1 \pm 2.2 \ vs. \ 8.8 \pm 12.8$ $\uparrow NB \ 1 \pm 1.1 \ vs. \ 2.7 \pm 4.2$ $\uparrow KAR \ 35.8 \pm 30.5 \ vs. \ 64.8 \pm 54.9$ $\uparrow KYC \ 36.1 \pm 40.1 \ vs. \ 25.3 \pm 17.3$ ies with direct coal exposure had a damage level	Leon-Mejia ⁵¹
Coal mine workers, two cities, Brazil	41 E, n.s., 36.86 ± 14 y 29 C, n.s., 46.69 ± 18.11 y, same cities not exposed to genotoxins, ionizing radiation, coal, chemicals	Occupational mixed exposure to coal dust Blood trace elements measurement PIXE	13.83 ± 8.12 y	2000 Giemsa	17/27	Basal Diff Cell death	$ \begin{array}{c} \uparrow 1 \pm 1.31 \ vs. \ 14.34 \pm 6.73 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Rohr ⁵²
Foundry workers, India	100 E, 100% men, 37.83 \pm 10.22 y (21–58) 100 C, 100% men, 38.48 \pm 9.83 (22– 58), not exposed to genotoxins, ionizing radiation, coal, chemicals	Occupational, questionnaire, n.s.	9.96 ± 1.90 y	2000 Feulgen	18/27	No different S ↑ ↑ NS ↑ ↑ ↑	ces in BMCytMN 2.22 \pm 0.42 vs. 4.84 \pm 0.03BN 6.52 \pm 0.23 vs. 13.28 \pm 0.20BEC 6.29 \pm 0.18 vs. 18.36 \pm 0.23NB 0.61 \pm 0.27 vs. 1.63 \pm 0.27MN 1.52 \pm 0.09 vs. 1.71 \pm 0.14BN 4.59 \pm 0.16 vs. 8.59 \pm 0.28BEC 4.10 \pm 0.05 vs. 17.51 \pm 0.21NB 0.14 \pm 0.06 vs. 1.39 \pm 0.21	Singaravelu ⁵³

Cotton weavers, Pakistan	51 E, 100% male, 37.73 ± 1.33 y 51 C, 100% male, 31.06 ± 1.41 y, similar socio- economic conditions, BMI, smoking and diet	Occupational, cotton dust mixture exposure Spectrometer measurements of dust particles and pesticides * μ g/m ³ : inhalable dust: 4816 \pm 2365, thoracic dust: 4299 \pm 2339; PM 2.5: 1305 \pm 9 24	15.27 ± 1.22 y	2000 Feulgen	19/27	Exposure years of correlation KAR, K	e correlation with BN only for 10–16 exposure, for exposure in general on with all cell death parameters (CC, YC, PYC)	Khan ⁵⁴
Calcite factory workers, Turkey	50 E, n.s., 30.76 ± 0.73 y 50 C, n.s., 30.68 \pm 1.28 y, working at university, no previous genotoxin exposure	Occupational, questionnaire, n.s.	$3.62 \pm 0.40 \text{ y}$	1000 Giemsa	18/27	Diff Cell death	$\uparrow MN* 8.04 \pm 0.78 \text{ vs. } 20.36 \pm 0.78$ $\uparrow BN* 4.08 \pm 0.61 \text{ vs. } 9.13 \pm 0.61$ $\uparrow BEC* 4.37 \pm 1.06 \text{ vs. } 9.62 \pm 1.06$ KAR 1.07 ± 0.17 vs. 2.66 ± 0.17 KYC 1.27 ± 0.30 vs. 3.50 ± 0.30	Diler ⁵⁵
Furniture workers, Turkey	20 E, n.s., 31 ± 6.71 y 20 C, n.s., 24.6 ± 4.95 y	Occupational, mixed soft and hard wood dust Amount of wood at the table surface in one day 4.7–28.9 mg/m ³	16.6 ± 7.51 y	1000 Giemsa	16/27	Diff	$\uparrow MN \ 1.50 \pm 1.18 \ vs. \ 6.63 \pm 1.65$ $\uparrow BEC \ 1.12 \pm 1 \ vs. \ 5.48 \pm 1.73$ $\uparrow KYL \ 1.92 \pm 0.97 \ vs. \ 7.87 \pm 1.54$ $\uparrow KAR \ 2.05 \pm 1.06 \ vs. \ 9.30 \pm 2.06$ $\uparrow BN \ 2.20 \pm 1.74 \ vs. \ 10.70 \pm 2.08$	Celik ⁵⁶

Workers in a veneer factory (VF) and carpenters from a furniture factory (FF), Austria	51 E VF, 49% males, m 44.4 ± 10.8, f 38.3 ± 10.8 y 38 E FF, 92% males, m 41.5 ± 12.9 y, f 42.3 ± 11.5 65 C, 66% males, m 38.8 ± 7.9, f 35.1 ± 5.5 y	Occupational, low levels of wood dust. Personal air sampling, gravimetric analysis, Inhalable dust levels: FF – 0.66 mg/m ³ VF – 0.39 mg/m ³ Individual measurements: FF – 0.84, VF – 0.31 mg/m ³	FF m 24.1 ± 12.5, f 22.3 ± 7.7 VF m 22.3 ± 7.7, f 9.1 ± 9.1 y	2000 buccal, 1500 nasal Feulgen staining	18/27	Basal buccal and significant exposed d BN, CC, k	↑5‰ vs. 7‰ d nasal BN, CC, KYL, KAR, MN ly higher in the exposed workers, id not differ in MN values, but did in CYL, KAR	Wultsch ⁵⁷
Constructio n and furniture workers, Australia	31 E, 100% male, 39.3±11.8y (18–60) 19 C, 100%male, (23–62) 37.9 ± 11.2 y, computer engineers and pantry chefs	Occupational, wood dust exposure Personal sampler through two working shifts Inhalable dust level $2.9 \pm 2.5 \text{ mg/m}^3 (0.8-22.9)$	20 ± 10.6 y	1000 buccal 1000 nasal Feulgen staining	17/27	buccal nasal Buccal and age, expos smoking	$ \uparrow MN 2.8 \pm 1.5 vs. 1.6 \pm 0.8 \uparrow Diff 646 \pm 9.1 vs. 449 \pm 17.1 \downarrow basal 51 \pm 24 vs. 21 \pm 1.9 \uparrow BN 7 \pm 0.5 vs. 4.2 \pm 0.2 \uparrow CC 57 \pm 3.1 vs. 43 \pm 2.6 \uparrow KAR 92 \pm 5 vs. 186 \pm 9.8 \uparrow PYC 22 \pm 2 vs. 36 \pm 3 \uparrow KYL 123 \pm 7.5 vs. 259 \pm 14.5 \leftrightarrow NB 0.6 \pm 0.1 vs. 1.1 \pm 0.1 MN 3.2 \pm 2.2 vs. 0.9 \pm 0.85 d nasal parameters were correlated with ure, duration of exposure and status of $	Bruschweiler ⁵ 8
Stainless steel production workers, Finland	29 E to Cr ^{6+,} 100% male, 48.1 (35–62) 14 E to Cr ³⁺ , 100% male, 48.4 (34–56) 5 E to chromite ore, 100% male, 49.2 (39–58) 39 C, 100% male, 44.6 y (35–59) from cold rolling mill	Chromium dust measurement in the air 1.8mg/m^3 total dust $\text{Cr}^{3+} 2.4 \text{ mg/m}^3, 248 \mu\text{g/m}^3 \text{Cr}$ exposure Chromite: 1 mg/m^3 dust, $22 \mu\text{g/m}^{\text{Cr}^{3+}}$	21.4 y (14–30) 24.4 y (14–30) 27.6 y (19–31)	200/4000 nasal Papanicolau staining DAPI–FISH MN+/–	17/27	nasal Cr ³⁺ Cr ⁶⁺ chromite C	$\leftrightarrow MN$ $MN+ 2.29 \pm 2.02 \text{ vs. } MN- 4.50 \pm 2.03$ $MN+ 2.62 \pm 2.65 \text{ vs. } MN- 4.41 \pm 2.40$ $MN+ 2.80 \pm 3.27 \text{ vs. } MN- 4.80 \pm 2.77$ $MN+ 2.67 \pm 2.22 \text{ vs. } MN- 5.18 \pm 2.91$	Huvinen ⁵⁹

Footwear workers, Brazil	29 SBA, 100% men, 27.10 ± 7.07 y, 19 WBA, 100% men, 25.38 ± 4.40 y 25 C, 100% men, 30.64 ± 8.76 y	Occupational, Footwear worker exposed to solvent based-SBA or water based adhesive-WBA and dust	3.98 ± 4.13 y SBA vs. 5.80 ± 4.03 y WBA	2000 Feulgen staining	15/27	L-CBMN Comet assay (%) Buccal MN	↔ SBA vs. WBA vs. C: 4.90 ± 2.34 vs. 3.88 ± 1.93 vs. 5.20 ± 2.33 ↑DF: SBA vs. WBA 2.76 ± 1.99 vs. 0.78 ± 0.91 , C 1.52 ± 1.31 ↑DI (0-800): SBA vs. WBA $8.35 \pm$ 7.85 vs. 2.13 ± 2.45 , SBA↑ vs. C 3.44 ± 3.24 , WBA↓ vs. C ↔ SBA vs. WBA vs. C: 1.15 ± 1.45 vs. 0.69 ± 0.87 vs. 0.62 ± 0.73	Heuser ³²
Open cast coal mining workers, Northern Colombia	200 E, 100% men, 44.0 ± 7.5 y (24– 60) 100 C, 100% men, 43.7 ± 7.8 y (26– 60)	Occupational mixed exposure to coal dust containing dust particles, heavy metals and PAHs	17.7 ± 6.9 (5–30)	2000 BNL, 1000 buccal Giemsa	17/27	L-CBMN Comet assay Buccal MN L-CBMN hig Buccal MN, higher in GS Buccal MN, parameters la carriers ↑Buccal NB Cell death in null carriers	 ↑MN in E significantly correlated with exposure ↑TD and DI in E significantly correlated with exposure ↑In E- MN, KAR, KYL significantly correlated with exposure gher in E GSTT1+ carriers NB and comet assay parameters TM1 null carriers NB, NPB and comet assay power in XRCC1 and hOGG1 variant in CYP1A1 variant carriers buccal MN higher in GSTT1/M1 	Espitia- Perez ³⁰

^aAbbreviations: B – buccal cells; C – control; f – female; h – hours; L – lymphocytes; L-CA – chromosome aberrations in lymphocytes; L-CBMN – lymphocyte cytokinesisblock micronucleus assay; L-SCE – lymphocyte sister chromatid exchange assay; m – male; MI – mitotic index; MN – micronuclei; N – nasal cells; NB – nuclear buds; NDI – nuclear division index; N-MN – nasal micronucleus assay; NPB – nucleoplasmic bridges; n.s. – not specified; QS –study quality score; y – years; CC – condensed chromatin; KAR – kariorrhectic chromatin; PYC – pycnotic cells, KYC – karyolytic cells; Diff – differentiated cells; Basal – basal cells; PIXE – particle-induced X-ray emission technique; S – smokers; NS – non-smokers; TL – tail length in μ m; TD or TI – tail DNA intensity in %, TM – tail movement.

 \uparrow significant increase, \downarrow significant decrease, number following the arrow in brackets indicates the mean ratio, \leftrightarrow no effect

Values are given as mean \pm SD, if not otherwise specified; * mean \pm SEM; [§]means calculated from original results that were reported as Log(MN) and Log(SCE), respectively.