#### SUPPLEMENTARY INFORMATION

## Improved DNA Equilibrium Binding Affinity Determinations of Platinum(II) Complexes using Synchrotron Radiation Circular Dichroism

Dale L. Ang,<sup>a</sup> Nykola C. Jones,<sup>b</sup> Frank Stootman,<sup>a</sup> Bahman Ghadirian<sup>a</sup> and

Janice R. Aldrich-Wright<sup>a\*</sup>

<sup>a</sup>Nanoscale Organisation and Dynamics Group, School of Science and Health, University of Western Sydney, Penrith, NSW, 2751, Australia. Fax: (+61) 246203025; Tel: (+61) 246203218; E-mail: <u>J.Aldrich-Wright@uws.edu.au</u>

<sup>b</sup>ISA, Department of Physics and Astronomy, Aarhus University, DK 8000 Aarhus C, Denmark.

\* Please address editorial correspondence to Prof. Janice R. Aldrich-Wright via email: j.aldrich-wright@uws.edu.au or via facsimile: +61 2 4620 3025.

# **Table of Contents**

| Table of Contents                           | 2 |
|---------------------------------------------|---|
| Input Data File CSV format                  | 3 |
| Equation Derivation                         | 4 |
| Binding Data obtained from SRCD experiments | 7 |
| References                                  |   |

## Input Data File CSV format

The *Mathematica* notebook accepts a standard CSV file; the path of which must be specified within the notebook. The format is as follows. Cell A1 contains the DNA concentration [M]. The first column contains the wavelengths. Subsequent columns contain the blank/buffer, DNA, followed by the DNA + MC data at the various concentrations.

An example is shown below.

| [DNA conc]   |              |            |                    |                    |
|--------------|--------------|------------|--------------------|--------------------|
|              | Blank/buffer | DNA, no MC | DNA + MC<br>conc 1 | DNA + MC<br>conc 2 |
| Wavelength 1 |              |            |                    |                    |
| Wavelength 2 |              |            |                    |                    |
| Wavelength 3 |              |            |                    |                    |
| Wavelength 4 |              |            |                    |                    |

| 0.000035 |       |       |            |            |
|----------|-------|-------|------------|------------|
|          | 0     | 0     | 0.00000166 | 0.00000332 |
| 400      | 0.366 | 0.475 | 0.397      | 0.415      |
| 399      | 0.355 | 0.442 | 0.426      | 0.467      |
| 398      | 0.346 | 0.455 | 0.412      | 0.437      |
| 397      | 0.345 | 0.457 | 0.443      | 0.441      |
| 396      | 0.384 | 0.511 | 0.418      | 0.416      |

### **Equation Derivation**

In what follows we use the following labels for description:  $L_F$  (free metal complex concentration),  $S_F$  (free binding site concentration),  $L_B$  (bound metal complex concentration),  $S_B$  (bound/occupied binding site concentration),  $L_T$  (total metal complex concentration) and  $S_T$  (total binding site concentration).

In the original development of the theory the binding equilibrium rate equation is given by,

$$L_F + S_F \underset{K}{\longleftrightarrow} L_B$$

Giving generally,

$$K = \frac{L_B}{L_F \times S_F} \tag{1}$$

The value of *K* is assumed to be a constant at a given wavelength and independent of  $L_B$ . Substituting for  $L_F = L_T - L_B$  and  $S_F = S_T - S_B$  into Eq. (1) and making a reasonable assumption that  $S_B = L_B$ , results in a quadratic equation for  $L_B$  which has a solution of

$$L_B = 0.5R \left( \frac{1}{K} + L_T + S_T - \sqrt{\left( \frac{1}{K} + L_T + S_T \right)^2 - 4S_T L_T} \right)$$
(2)

where *R* is a scaling constant, and  $L_B$  is directly proportional to the measured normalized molar absorption coefficient,  $\varepsilon_M$ . The value of *K* can be found by fitting the titration data directly in Eq. (2), which is the preferred approach.<sup>1</sup> The number of DNA binding sites, *n*, is related to the total DNA concentration and calculated where  $n = [\text{DNA}]/S_T$ .

In the literature, however, Scatchard,<sup>2</sup> Schmechel and Crothers<sup>3</sup> and others<sup>4-6</sup> have attempted to linearize Eq. (1) by approximation. Substituting the above values in equation (1) gives

$$K = \frac{L_B}{(L_T - L_B)(S_T - L_B)}$$
(3)

A rearrangement results in

$$\frac{1}{L_B} = \frac{1}{K(L_T - L_B)L_T} + \frac{1}{L_T}$$
(4)

At this point a further assumption is made that at low total ligand concentration  $L_B \rightarrow L_T$  on the RHS of Eq. (4). This implies that by this method *K* is an extrapolation as  $L_B \rightarrow 0$ ; this is at best artificial because *K* is determined when there is effectively no binding. Such an assumption is not made by Eq. (2). In the literature Eq. (4) leads to a more traditional form in order to determine K by using  $\varepsilon_{M}$ 

(measured absorbance),  $\varepsilon_{B}$  (bound absorbance),  $\varepsilon_{F}$  (free absorbance), and the identity

$$\frac{1}{L_B} = \frac{(\varepsilon_B - \varepsilon_F)}{(\varepsilon_M - \varepsilon_F)} \frac{1}{L_T}$$

To obtain

$$\frac{1}{\varepsilon_M - \varepsilon_F} = \frac{1}{K(\varepsilon_B - \varepsilon_F)} \times \frac{1}{(S_T - L_B)} + \frac{1}{(\varepsilon_B - \varepsilon_F)}$$
(5)

)

Plotting the experimentally derived  $\varepsilon_M - \varepsilon_B$  versus  $S_T - L_B$  yields a value of slope and intercept from which *K*, again extrapolated to  $L_B \rightarrow 0$ , is found. If the plot is not a straight line (as mathematically it is not), it is argued that a value of *K* can be found from the initial slope of the graph. Both approaches determine artificially the binding constant at very low bound ligand concentrations.

## **Binding Data obtained from SRCD experiments**

|                                        | Wavelen          | gth           | Binding | g Constant                                                                                                                                                                                                                                                               | Estimate | d Binding sites      | 3                                    |
|----------------------------------------|------------------|---------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|--------------------------------------|
|                                        | nm               |               | K       | $\times 10^{5}$                                                                                                                                                                                                                                                          | per o    | complex, <i>n</i>    |                                      |
|                                        | 297              |               | 1.1     | $\pm 0.54$                                                                                                                                                                                                                                                               | 2        | $.4 \pm 0.1$         |                                      |
|                                        | 320              |               | 5.8     | $\pm 0.40$                                                                                                                                                                                                                                                               | 4        | $.3 \pm 0.2$         |                                      |
| 25<br>20<br>15<br>10<br>0<br>-5<br>-10 | H2               | 2*<br>N N NH2 |         | 10<br>8<br>6<br>4<br>2<br>0<br>2<br>2<br>0<br>2<br>2<br>4<br>6<br>8<br>9<br>0<br>2<br>2<br>9<br>0<br>2<br>2<br>4<br>8<br>8<br>9<br>0<br>2<br>2<br>9<br>0<br>2<br>2<br>9<br>0<br>2<br>3<br>9<br>10<br>9<br>10<br>9<br>10<br>9<br>10<br>9<br>10<br>9<br>10<br>9<br>10<br>9 | A        |                      | 0.09<br>0.15<br>0.24<br>0.36<br>0.72 |
| 175                                    | 225<br>Wavelengt | 275<br>h / nm | 325     | 175                                                                                                                                                                                                                                                                      | 225<br>W | 275<br>avelength /nm | 325                                  |

**Figure S1** Expt B – SRCD and ISRCD spectra at different concentrations of metal complex 1, into calf thymus DNA in PS buffer.

**Table S2**Complex 2, [Pt(4-Mephen)(en)]<sup>2+</sup> binding data, experiment A.

| Wavelength | Binding Constant | Estimated Binding sites |
|------------|------------------|-------------------------|
| nm         | $K 	imes 10^4$   | per complex, n          |
| 181        | $2.14\pm0.84$    | $2.6 \pm 0.1$           |
| 185        | $0.76\pm0.09$    | $3.6 \pm 0.1$           |
| 186        | $1.08 \pm 0.15$  | $3.3 \pm 0.1$           |
| 190        | $1.75\pm0.25$    | $2.8 \pm 0.1$           |
| 192        | $1.79 \pm 0.14$  | $2.4 \pm 0.1$           |
| 194        | $3.37\pm0.95$    | $2.1 \pm 0.1$           |
| 195        | $1.46 \pm 0.21$  | $2.1 \pm 0.5$           |



**Figure S2** Expt A – SRCD and ISRCD spectra at different concentrations of metal complex **2**, into ct-DNA in PS buffer.

**Table S3**Complex 2, [Pt(4-Mephen)(en)]<sup>2+</sup> binding data, experiment B.

| Wavelength | Binding Constant | Estimated Binding sites |
|------------|------------------|-------------------------|
| nm         | $K 	imes 10^4$   | per complex, n          |
| 177        | $11.6 \pm 3.0$   | $2.4 \pm 0.2$           |
| 184        | $0.95\pm0.52$    | $1.6 \pm 0.0$           |
| 186        | $1.8\pm0.74$     | $1.7 \pm 0.1$           |
| 192        | $3.4\pm0.52$     | $1.6 \pm 0.0$           |
| 194        | $6.3 \pm 3.5$    | $1.5 \pm 0.0$           |



**Figure S3** Expt B - SRCD and ISRCD spectra at different concentrations of metal complex **2**, into ct-DNA in PS buffer.

**Table S4**Complex 3, [Pt(5-Mephen)(en)]<sup>2+</sup> binding data, experiment A.

| Wavelength | Binding Constant | Estimated Binding sites |
|------------|------------------|-------------------------|
| nm         | $K 	imes 10^5$   | per complex, n          |
| 192        | $2.33\pm0.18$    | $2.2 \pm 0.0$           |
| 193        | $3.34 \pm 0.22$  | $2.2 \pm 0.0$           |
| 221        | $1.32 \pm 0.78$  | $6.5 \pm 1.0$           |



**Figure S4** Expt A - SRCD and ISRCD spectra at different concentrations of metal complex **3**, into ct-DNA in PS buffer.

**Table S5**Complex 3, [Pt(5-Mephen)(en)]<sup>2+</sup> binding data, experiment B.

| Wavelength | Binding Constant | Estimated Binding sites |
|------------|------------------|-------------------------|
| nm         | $K \times 10^4$  | per complex, n          |
| 181        | $4.5 \pm 1.9$    | $2.5 \pm 0.1$           |
| 185        | $5.8 \pm 1.2$    | $2.5 \pm 0.1$           |
| 191        | $8.5\pm0.73$     | $2.4 \pm 0.1$           |
| 208        | $5.2 \pm 1.2$    | $4.0 \pm 0.2$           |
| 210        | $5.6\pm0.87$     | $3.6 \pm 0.2$           |
| 213        | $2.7 \pm 0.86$   | $3.9 \pm 0.1$           |
| 214        | $2.2 \pm 0.42$   | $4.0 \pm 0.2$           |
| 215        | $2.4 \pm 0.75$   | $3.8 \pm 0.1$           |
| 218        | $1.2 \pm 0.47$   | $6.0 \pm 0.2$           |
| 279        | $0.46\pm0.10$    | $1.9 \pm 0.0$           |
| 330        | $7.0 \pm 0.78$   | $3.9 \pm 0.3$           |



**Figure S5** Expt B - SRCD and ISRCD spectra at different concentrations of metal complex **3**, into ct-DNA in PS buffer.

Table S6

Complex 4, [Pt(4,7-Me<sub>2</sub>phen)(en)]<sup>2+</sup> binding data, experiment A.

| Wavelength | Binding Constant | Estimated Binding sites |
|------------|------------------|-------------------------|
| nm         | $K 	imes 10^4$   | per complex, <i>n</i>   |
| 194        | $4.7\pm0.61$     | $2.6 \pm 0.2$           |
| 195        | $3.4\pm0.70$     | $2.4 \pm 0.1$           |
| 199        | $0.35\pm0.09$    | $1.9 \pm 0.0$           |
| 307        | $33 \pm 1.5$     | $2.4 \pm 0.1$           |
| 312        | $24 \pm 1.4$     | $2.2 \pm 0.1$           |
| 336        | $1.4 \pm 0.2$    | $2.1 \pm 0.1$           |



**Figure S6** Expt A - SRCD and ISRCD spectra at different concentrations of metal complex 4, into ct-DNA in PS buffer.

**Table S7**Complex 4, [Pt(4,7-Me2phen)(en)]<sup>2+</sup> binding data, experiment B.

| Wavelength | Binding Constant | Estimated Binding sites |
|------------|------------------|-------------------------|
| nm         | $K 	imes 10^5$   | per complex, n          |
| 184        | $3.5\pm0.28$     | $2.0 \pm 0.1$           |
| 209        | $1.9 \pm 0.12$   | $3.2 \pm 0.1$           |
| 311        | $8.6 \pm 0.76$   | $3.6 \pm 0.2$           |



**Figure S7** Expt B - SRCD and ISRCD spectra at different concentrations of metal complex 4, into calf thymus DNA in PS buffer.

| Wavelength | Binding Constant | Estimated Binding sites |
|------------|------------------|-------------------------|
| nm         | $K 	imes 10^4$   | per complex, n          |
| 207        | $13.4 \pm 0.96$  | $3.3 \pm 0.1$           |
| 210        | $6.9\pm0.41$     | $3.2 \pm 0.0$           |
| 212        | $5.6 \pm 0.33$   | $3.1 \pm 0.0$           |
| 214        | $7.3\pm0.27$     | $3.3 \pm 0.0$           |
| 215        | $9.1\pm0.52$     | $3.3 \pm 0.0$           |
| 216        | $9.8\pm0.34$     | $3.2 \pm 0.0$           |
| 220        | $3.3 \pm 0.21$   | $4.8 \pm 0.1$           |
| 241        | $0.53\pm0.10$    | $1.6 \pm 0.0$           |
| 242        | $2.0\pm0.35$     | $2.0 \pm 0.1$           |
| 298        | $2.2 \pm 0.22$   | $2.5 \pm 0.1$           |
| 300        | $0.81 \pm 0.20$  | $2.8 \pm 0.1$           |

**Table S8**Complex 5, [Pt(5,6-Me2phen)(en)]<sup>2+</sup> binding data, experiment A.



**Figure S8** Expt A - SRCD and ISRCD spectra at different concentrations of metal complex 5, into ct-DNA in PS buffer.

| Wavelength | Binding Constant | Estimated Binding sites |
|------------|------------------|-------------------------|
| nm         | $K 	imes 10^4$   | per complex, n          |
| 176        | $6.2\pm0.98$     | $1.4 \pm 0.1$           |
| 181        | $7.4 \pm 1.5$    | $2.3 \pm 0.1$           |
| 183        | $2.9\pm0.37$     | $2.4 \pm 0.1$           |
| 185        | $2.5 \pm 0.13$   | $2.4 \pm 0.1$           |
| 186        | $3.5\pm0.35$     | $2.3 \pm 0.1$           |
| 191        | $4.0 \pm 1.4$    | $2.2 \pm 0.1$           |
| 193        | $5.1\pm0.39$     | $2.0 \pm 0.1$           |
| 235        | $10 \pm 0.73$    | $2.7 \pm 0.1$           |
| 259        | $5.3\pm0.54$     | $2.8 \pm 0.1$           |
| 260        | $1.7\pm0.20$     | $3.2 \pm 0.1$           |
| 261        | $1.8 \pm 0.16$   | $3.0 \pm 0.1$           |
| 262        | $3.8\pm0.73$     | $2.7 \pm 0.1$           |
| 269        | $8.5\pm0.43$     | $2.6\pm0.0$             |
| 304        | $2.4\pm0.23$     | $2.1 \pm 0.0$           |
| 329        | $3.6 \pm 1.9$    | $3.0 \pm 0.2$           |

**Table S9**Complex 5,  $[Pt(5,6-Me_2phen)(en)]^{2+}$  binding data, experiment B.



**Figure S9** Expt B - SRCD and ISRCD spectra at different concentrations of metal complex 5, into ct-DNA in PS buffer.

Table S10

Complex 6, [Pt(3478-Me<sub>4</sub>phen)(en)]<sup>2+</sup> binding data, experiment A.

| Wavelength | Binding Constant | Estimated Binding sites |
|------------|------------------|-------------------------|
| nm         | $K 	imes 10^5$   | per complex, n          |
| 208        | $0.77 \pm 0.13$  | $4.9 \pm 0.4$           |
| 254        | $0.71\pm0.07$    | $6.0 \pm 0.4$           |
| 261        | $0.10 \pm 0.01$  | $5.2 \pm 0.1$           |
| 323        | $2.5 \pm 0.27$   | $4.5 \pm 0.2$           |
| 330        | $1.1 \pm 0.10$   | $9.8 \pm 0.5$           |



**Figure S10** Expt A - SRCD and ISRCD spectra at different concentrations of metal complex 6, into ct-DNA in PS buffer.

**Table S11**Complex 6, [Pt(3478-Mephen)(en)]<sup>2+</sup> binding data, experiment B

| <br>Wavelength | Binding Constant | Estimated Binding sites |
|----------------|------------------|-------------------------|
| nm             | $K 	imes 10^4$   | per complex, n          |
| <br>300        | $1.6 \pm 0.15$   | $3.5 \pm 0.1$           |
| 301            | $2.4 \pm 0.20$   | $4.7 \pm 0.1$           |
| 323            | $0.5 \pm 0.19$   | $5.4 \pm 0.2$           |



**Figure S11** Expt B - SRCD and ISRCD spectra at different concentrations of metal complex 6, into calf thymus DNA in PS buffer.

### References

- 1. F. H. Stootman, D. M. Fisher, A. Rodger and J. R. Aldrich-Wright, *The Analyst*, 2006, 131, 1145-1151.
- 2. G. Scatchard, Ann. N. Y. Acad. Sci., 1949, 51, 660-672.
- 3. D. E. Schmechel and D. M. Crothers, *Biopolymers*, 1971, 10, 465-480.
- 4. S. Sarkar and B. Das, *Complex Metals*, 2014, DOI: 10.1080/2164232X.2014.887448, 80-87.
- 5. H. Wu, F. Kou, F. Jia, B. Liu, J. Yuan and Y. Bai, *Bioinorganic Chemistry and Applications*, 2011, 2011.
- 6. A. M. Pyle, J. P. Rehmann, R. Meshoyrer, C. V. Kumar, N. J. Turro and J. K. Barton, *Journal of the American Chemical Society*, 1989, 111, 3051-3058.