Supplementary Figures

DNA/RNA chimera templates improve the emission intensity and target

accessibility of AgNCs-based sensors for human miRNA detection

Pratik Shah^{†§}, Suk Won Choi^{‡§}, Ho-jin Kim^{‡§}, Seok Keun Cho[†], Peter Waaben Thulstrup[€], Morten Jannik Bjerrum[€], Yong-Joo Bhang[‡], Jong Cheol Ahn[‡], and Seong Wook Yang[†]*

[†]UNIK Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark

[€]Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark

[‡]Seoulin Bioscience Co. Ltd. 4F. #A, KOREA BIO PARK, 700, Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea

§Equal contributions

*Correspondence E-mail: swyang@life.ku.dk (S.W.Y.)

Supplementary Figure S1. Prediction of secondary structures of DNA/AgNCs probes for let-7a. To predict the structures, we used m-fold DNA program (<u>http://mfold.rna.albany.edu/?q=mfold</u>).

miR-21-5p	_x U _x A _x G _x C _x U _y U _x A _x U _y C _x A _x G _x A _x C _y U _y G _x A _y U _y G _y U _y G _y A
miR-200c	ŗŬŗĂŗĂŗŬŗĂŗĊŗŬŗĠŗĊŗĊŗĠŗĠŗĠŗŨŗĂŗĂŗŨŗĠŗĂŗŬŗĠŗĠŗĂ
miR-122	ŗŬŗĠŗĠŗĂŗĠŗŬŗĠŗŨŗĠŗĂŗĊŗĂŗĂŗŬŗĠŗĠŗŨŗĠŗŨŗŬŗŬŗĠ
ath-miR166	ŗŪŗĊŗĠŗĠŗĂŗĊŗĊŗĂŗĠŗĠŗĊŗŬŗŬŗĊŗĂŗŬŗŬŗĊŗĊŗĊŗĊ
ath-miR172	ŗĂŗĠŗĂŗĂŗŮŗĊŗŮŗŮŗĠŗĂŗŮŗĠŗĊŗŮŗĠŗĊŗŮŗĠŗĊŗĂŗŬ
Let-7a	ŗŬŗĠŗĂŗĠŗĠŗŬŗĂŗĠŗŬŗĂŗĠŗĊŗŬŗĞŗŬŗĂŗŨŗĂŗĠŗŬŗĂ

Supplementary Figure S2. Target miRNA sequences used in this study.

Supplementary Figure S3. Target sensitivity of two DNA probes against miR-200c. A) The emission intensity of DNA-12nt-RED-200c probe was diminished 3.6 fold by miR-200c. B) The emission intensity of D-12nt-R-23nt-200c probe was diminished 2.9 fold by miR-200c. These results suggest that the secondary structure of DNA-12nt-RED-200c is more stable than target accessibility.

Supplementary Figure S4. Comparison of emission intensity between 25 °C and 75 °C. A) The emission intensity of DNA-12nt-RED-200c probe was diminished 2.3 fold under 75°C. B) The emission intensity of D-12nt-R-23nt-200c probe was diminished 10 fold under 75°C. These results suggest that the secondary structure of DNA-12nt-RED-200c is more stable than that of D-12nt-R-23nt-200c.

Supplementary Figure S5. A summarized scheme of DNA/RNA chimera sensor strategy