Supplementary Information

pFe^{3+} Determination of Multidentate Ligands by a Fluorescence Assay

Yongmin Ma, Tao Zhou and Robert C Hider

Structures of Ligands

L1

L2

L3

L4

L5

L6

L7

L8

L9

111

L12

L13: $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}=\mathrm{CH}_{3}$
L14: $\mathrm{R}_{1}=\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}, \quad \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$
L15: $\mathrm{R}_{1}=\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{CH}_{2}, \mathrm{R}_{1}=\mathrm{C}_{2} \mathrm{H}_{5}$
L16: $\mathrm{R}_{1}=\mathrm{CH}_{3}, \quad \mathrm{R}=\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$
L17: $\mathrm{R}_{1}=\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}, \quad \mathrm{R}=\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$
L18: $\mathrm{R}_{1}=\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{CH}_{2}, \quad \mathrm{R}=\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$
L19: $\mathrm{R}_{1}=\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{CH}_{2}, \quad \mathrm{R}=\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13}$
L20: $\mathrm{R}_{1}=\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}, \quad \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

L21: $\mathrm{R}=\mathrm{CH} 2 \mathrm{CH} 2 \mathrm{OH}$

L22

L23

L24: Polymer of L23 and iron binding capacity at $291 \mu \mathrm{~mol} / \mathrm{g}$.

L26

L28

Calculation of unknown pFe value of hexadentate ligand based on the pFe value of the competing ligand and the relative fluorescence

Hexadentate ligands have simple equilibrium constants as indicated in Eq. 1 and 2. The competition between the two hexadentate ligands for iron is presented in Eq. 3.

$\mathrm{FeL}_{1}+\mathrm{L}_{2} \stackrel{\mathrm{~K}}{\rightleftharpoons} \mathrm{~L}_{1}+\mathrm{FeL}_{2}$

Eq. 1

Eq. 2

Eq. 3

The equilibrium constants K_{1}, K_{2} and K can be written as follows:
$\mathrm{K}_{1}=\left[\mathrm{FeL}_{1}\right] /[\mathrm{Fe}]\left[\mathrm{L}_{1}\right]$
$\mathrm{K}_{2}=\left[\mathrm{FeL}_{2}\right] /[\mathrm{Fe}]\left[\mathrm{L}_{2}\right]$
$\mathrm{K}=\left[\mathrm{L}_{1}\right]\left[\mathrm{FeL}_{2}\right] /\left[\mathrm{FeL}_{1}\right]\left[\mathrm{L}_{2}\right]$

If L_{1} represents CP691 and L_{2} represents DFO, then based on the exponential curve in Figure 3, at 50\% relative fluorescence, the ratio of $\left[\mathrm{L}_{2}\right]_{\text {total }} /\left[\mathrm{L}_{1}\right]_{\text {total }}=125$. As $\left[\mathrm{L}_{1}\right]_{\text {total }}=$ $[\mathrm{Fe}]_{\text {total }}=6 \mu \mathrm{M}$, then $\left[\mathrm{L}_{2}\right]_{\text {total }}=750 \mu \mathrm{M}$, and the point of 50% fluorescence occurs at $\left[\mathrm{L}_{1}\right]=3 \mu \mathrm{M}$.

As $\left[\mathrm{L}_{1}\right]_{\text {total }}=\left[\mathrm{L}_{1}\right]+\left[\mathrm{FeL}_{1}\right]$,
$\left[\mathrm{FeL}_{1}\right]$ can be calculated by the equation $\left[\mathrm{FeL}_{1}\right]=\left[\mathrm{L}_{1}\right]_{\text {total }}-\left[\mathrm{L}_{1}\right]=3 \mu \mathrm{M}$

As $[\mathrm{Fe}]_{\text {total }}=[\mathrm{Fe}]+\left[\mathrm{FeL}_{1}\right]+\left[\mathrm{FeL}_{2}\right]$ and the ligands are in excess and $[\mathrm{Fe}]$ is very low, $\left[\mathrm{FeL}_{2}\right] \approx[\mathrm{Fe}]_{\text {total }}-\left[\mathrm{FeL}_{1}\right]=3 \mu \mathrm{M}$.

As $\left[\mathrm{L}_{2}\right]_{\text {total }}=\left[\mathrm{L}_{2}\right]+\left[\mathrm{FeL}_{2}\right]$, so $\left[\mathrm{L}_{2}\right]=\left[\mathrm{L}_{2}\right]_{\text {total }}-\left[\mathrm{FeL}_{2}\right]=750-3=747 \mu \mathrm{M}$.

Therefore, $\mathrm{K}=(3 \mu \mathrm{M} \times 3 \mu \mathrm{M}) /(3 \mu \mathrm{M} \times 747 \mu \mathrm{M})=1 / 249$

As K $=\left[\mathrm{L}_{1}\right]\left[\mathrm{FeL}_{2}\right] /\left[\mathrm{FeL}_{1}\right]\left[\mathrm{L}_{2}\right]=\left(\left[\mathrm{L}_{1}\right]\left(\mathrm{K}_{2}[\mathrm{Fe}]\left[\mathrm{L}_{2}\right]\right) /\left(\mathrm{K}_{1}[\mathrm{Fe}]\left[\mathrm{L}_{1}\right]\left[\mathrm{L}_{2}\right]\right)=\mathrm{K}_{2} / \mathrm{K}_{1}\right.$

At the condition of $[\mathrm{L}]=10 \mu \mathrm{M},[\mathrm{Fe}]=1 \mu \mathrm{M}$ and $\mathrm{pH} 7.4,[\mathrm{Fe}]=2.5 \times 10^{-27} \mu \mathrm{M}$ when $\mathrm{L}=\mathrm{DFO}\left(\mathrm{pFe}^{3+}=26.6\right)$,

Thus $\mathrm{K}_{2}=\left[\mathrm{FeL}_{2}\right] /[\mathrm{Fe}]\left[\mathrm{L}_{2}\right]=1 \mu \mathrm{M} /\left(2.5 \times 10^{-27} \mu \mathrm{M} \times 9 \mu \mathrm{M}\right)$
$\mathrm{K}_{1}=\left[\mathrm{FeL}_{1}\right] /[\mathrm{Fe}]\left[\mathrm{L}_{1}\right]=1 \mu \mathrm{M} /\left([\mathrm{Fe}]_{\mathrm{L}_{1}} \mathrm{x} 9 \mu \mathrm{M}\right)\left(\mathrm{L}_{1}=\mathrm{CP} 691\right)$

So $\left[\mathrm{Fe}_{\mathrm{L} 1}=1 /\left(9 \mathrm{~K}_{1}\right)=1 /\left(9 \mathrm{x}\left(\mathrm{K}_{2} / \mathrm{K}\right)\right)=\mathrm{K} /\left(9 \mathrm{~K}_{2}\right)=(1 / 249) /\left(9 \times\left(1 /\left(9 \times 2.5 \times 10^{-}\right.\right.\right.\right.$ $\left.\left.{ }^{27} \mu \mathrm{M}\right)\right)$) $=1 \times 10^{-29} \mu \mathrm{M}$

Therefore, $\mathrm{pFe}_{\mathrm{L} 1}=$ 29.0. In fact, the $\mathrm{pFe}_{\mathrm{L} 1}$ value can be calculated from any point on the exponential curve. The average value of the pFe calculated from the experimental ratio points is 28.8 .

